Part Number Hot Search : 
83977 709M6M NJG1505R AT89LP 5KP170 DM74LS KBP02 LBN8005A
Product Description
Full Text Search
 

To Download EFM32LG280 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 1 www.silabs.com EFM32LG280 datasheet f256/f128/f64 ? arm cortex-m3 cpu platform ? high performance 32-bit processor @ up to 48 mhz ? memory protection unit ? flexible energy management system ? 20 na @ 3 v shutoff mode ? 0.4 a @ 3 v shutoff mode with rtc ? 0.65 a @ 3 v stop mode, including power-on reset, brown-out detector, ram and cpu retention ? 0.95 a @ 3 v deep sleep mode, including rtc with 32.768 khz oscillator, power-on reset, brown-out detector, ram and cpu retention ? 63 a/mhz @ 3 v sleep mode ? 211 a/mhz @ 3 v run mode, with code executed from flash ? 256/128/64 kb flash ? 32 kb ram ? 85 general purpose i/o pins ? configurable push-pull, open-drain, pull-up/down, input filter, drive strength ? configurable peripheral i/o locations ? 16 asynchronous external interrupts ? output state retention and wake-up from shutoff mode ? 12 channel dma controller ? 12 channel peripheral reflex system (prs) for autonomous in- ter-peripheral signaling ? hardware aes with 128/256-bit keys in 54/75 cycles ? timers/counters ? 4 16-bit timer/counter ? 43 compare/capture/pwm channels ? dead-time insertion on timer0 ? 16-bit low energy timer ? 1 24-bit real-time counter and 1 32-bit real-time counter ? 3 16 /8 -bit pulse counter ? watchdog timer with dedicated rc oscillator @ 50 na ? backup power domain ? rtc and retention registers in a separate power domain, avail- able in all energy modes ? operation from backup battery when main power drains out ? external bus interface for up to 4256 mb of external memory mapped space ? tft controller with direct drive ? communication interfaces ? 3 universal synchronous/asynchronous receiv- er/transmitter ? uart/spi/smartcard (iso 7816) /irda /i2s ? 2 universal asynchronous receiver/transmitter ? 2 low energy uart ? autonomous operation with dma in deep sleep mode ? 2 i 2 c interface with smbus support ? address recognition in stop mode ? ultra low power precision analog peripherals ? 12-bit 1 msamples/s analog to digital converter ? 8 single ended channels/4 differential channels ? on-chip temperature sensor ? 12-bit 500 ksamples/s digital to analog converter ? 2 analog comparator ? capacitive sensing with up to 16 inputs ? 3 operational amplifier ? 6.1 mhz gbw, rail-to-rail, programmable gain ? supply voltage comparator ? low energy sensor interface (lesense) ? autonomous sensor monitoring in deep sleep mode ? wide range of sensors supported, including lc sen- sors and capacitive buttons ? ultra efficient power-on reset and brown-out detec- tor ? debug interface ? 2-pin serial wire debug interface ? 1-pin serial wire viewer ? embedded trace module v3.5 (etm) ? pre-programmed uart bootloader ? temperature range -40 to 85 oc ? single power supply 1.98 to 3.8 v ? lqfp100 package 32-bit arm cortex-m0+, cortex-m3 and cortex-m4 microcontrollers for: ? energy, gas, water and smart metering ? health and fitness applications ? smart accessories ? alarm and security systems ? industrial and home automation
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 2 www.silabs.com 1 ordering information table 1.1 (p. 2 ) shows the available EFM32LG280 devices. table 1.1. ordering information ordering code flash (kb) ram (kb) max speed (mhz) supply voltage (v) temperature (oc) package EFM32LG280f64g-e-qfp100 64 32 48 1.98 - 3.8 -40 - 85 lqfp100 EFM32LG280f128g-e-qfp100 128 32 48 1.98 - 3.8 -40 - 85 lqfp100 EFM32LG280f256g-e-qfp100 256 32 48 1.98 - 3.8 -40 - 85 lqfp100 visit www.silabs.com for information on global distributors and representatives.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 3 www.silabs.com 2 system summary 2.1 system introduction the efm32 mcus are the world?s most energy friendly microcontrollers. with a unique combination of the powerful 32-bit arm cortex-m3, innovative low energy techniques, short wake-up time from ener- gy saving modes, and a wide selection of peripherals, the efm32lg microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. this section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32LG280 devices. for a complete feature set and in- depth information on the modules, the reader is referred to the efm32lg reference manual . a block diagram of the EFM32LG280 is shown in figure 2.1 (p. 3 ) . figure 2.1. block diagram clock managem ent energy managem ent serial interfaces i/ o ports core and mem ory tim ers and triggers analog interfaces security 32- bit bus peripheral reflex system arm cortex ? - m3 processor flash program mem ory lesense high freq rc oscillator high freq. crystal oscillator tim er/ counter low energy tim er pulse counter real tim e counter low freq. crystal oscillator low freq. rc oscillator watchdog tim er ram mem ory ex t. bus interface general purpose i/ o mem ory protection unit dma controller debug interface w/ etm ex ternal interrupts pin reset hardware aes lg280f64/ 128/ 256 adc dac analog com parator operational am plifier usart low energy uart i 2 c uart power- on reset voltage regulator back- up power dom ain voltage com parator brown- out detector tft driver back- up rtc pin wakeup ultra low freq. rc oscillator aux high freq. rc oscillator 2.1.1 arm cortex-m3 core the arm cortex-m3 includes a 32-bit risc processor which can achieve as much as 1.25 dhrystone mips/mhz. a memory protection unit with support for up to 8 memory segments is included, as well as a wake-up interrupt controller handling interrupts triggered while the cpu is asleep. the efm32 implementation of the cortex-m3 is described in detail in efm32 cortex-m3 reference manual . 2.1.2 debug interface (dbg) this device includes hardware debug support through a 2-pin serial-wire debug interface and an embed- ded trace module (etm) for data/instruction tracing . in addition there is also a 1-wire serial wire viewer pin which can be used to output profiling information, data trace and software-generated messages. 2.1.3 memory system controller (msc) the memory system controller (msc) is the program memory unit of the efm32lg microcontroller. the flash memory is readable and writable from both the cortex-m3 and dma . the flash memory is divided
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 4 www.silabs.com into two blocks; the main block and the information block. program code is normally written to the main block. additionally, the information block is available for special user data and flash lock bits. there is also a read-only page in the information block containing system and device calibration data. read and write operations are supported in the energy modes em0 and em1. 2.1.4 direct memory access controller (dma) the direct memory access (dma) controller performs memory operations independently of the cpu. this has the benefit of reducing the energy consumption and the workload of the cpu, and enables the system to stay in low energy modes when moving for instance data from the usart to ram or from the external bus interface to a pwm-generating timer. the dma controller uses the pl230 dma controller licensed from arm. 2.1.5 reset management unit (rmu) the rmu is responsible for handling the reset functionality of the efm32lg. 2.1.6 energy management unit (emu) the energy management unit (emu) manage all the low energy modes (em) in efm32lg microcon- trollers. each energy mode manages if the cpu and the various peripherals are available. the emu can also be used to turn off the power to unused sram blocks. 2.1.7 clock management unit (cmu) the clock management unit (cmu) is responsible for controlling the oscillators and clocks on-board the efm32lg. the cmu provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. the high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 watchdog (wdog) the purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli- cation reliability. the failure may e.g. be caused by an external event, such as an esd pulse, or by a software failure. 2.1.9 peripheral reflex system (prs) the peripheral reflex system (prs) system is a network which lets the different peripheral module communicate directly with each other without involving the cpu. peripheral modules which send out reflex signals are called producers. the prs routes these reflex signals to consumer peripherals which apply actions depending on the data received. the format for the reflex signals is not given, but edge triggers and other functionality can be applied by the prs. 2.1.10 external bus interface (ebi) the external bus interface provides access to external parallel interface devices such as sram, flash, adcs and lcds. the interface is memory mapped into the address bus of the cortex-m3. this enables seamless access from software without manually manipulating the io settings each time a read or write is performed. the data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. the timing is adjustable to meet specifications of the external devices. the interface is limited to asynchronous devices. 2.1.11 tft direct drive the ebi contains a tft controller which can drive a tft via a 565 rgb interface. the tft controller supports programmable display and port sizes and offers accurate control of frequency and setup and hold timing. direct drive is supported for tft displays which do not have their own frame buffer. in
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 5 www.silabs.com that case tft direct drive can transfer data from either on-chip memory or from an external memory device to the tft at low cpu load. automatic alpha-blending and masking is also supported for transfers through the ebi interface. 2.1.12 inter-integrated circuit interface (i2c) the i 2 c module provides an interface between the mcu and a serial i 2 c-bus. it is capable of acting as both a master and a slave, and supports multi-master buses. both standard-mode, fast-mode and fast- mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 mbit/s. slave arbitration and timeouts are also provided to allow implementation of an smbus compliant system. the interface provided to software by the i 2 c module, allows both fine-grained control of the transmission process and close to automatic transfers. automatic recognition of slave addresses is provided in all energy modes. 2.1.13 universal synchronous/asynchronous receiver/transmitter (us- art) the universal synchronous asynchronous serial receiver and transmitter (usart) is a very flexible serial i/o module. it supports full duplex asynchronous uart communication as well as rs-485, spi, microwire and 3-wire. it can also interface with iso7816 smartcards, irda and i2s devices. 2.1.14 pre-programmed uart bootloader the bootloader presented in application note an0003 is pre-programmed in the device at factory. auto- baud and destructive write are supported. the autobaud feature, interface and commands are described further in the application note. 2.1.15 universal asynchronous receiver/transmitter (uart) the universal asynchronous serial receiver and transmitter (uart) is a very flexible serial i/o module. it supports full- and half-duplex asynchronous uart communication. 2.1.16 low energy universal asynchronous receiver/transmitter (leuart) the unique leuart tm , the low energy uart, is a uart that allows two-way uart communication on a strict power budget. only a 32.768 khz clock is needed to allow uart communication up to 9600 baud/ s. the leuart includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.17 timer/counter (timer) the 16-bit general purpose timer has 3 compare/capture channels for input capture and compare/pulse- width modulation (pwm) output. timer0 also includes a dead-time insertion module suitable for motor control applications. 2.1.18 real time counter (rtc) the real time counter (rtc) contains a 24-bit counter and is clocked either by a 32.768 khz crystal oscillator, or a 32.768 khz rc oscillator. in addition to energy modes em0 and em1, the rtc is also available in em2. this makes it ideal for keeping track of time since the rtc is enabled in em2 where most of the device is powered down. 2.1.19 backup real time counter (burtc) the backup real time counter (burtc) contains a 32-bit counter and is clocked either by a 32.768 khz crystal oscillator, a 32.768 khz rc oscillator or a 1 khz ulfrco. the burtc is available in all energy modes and it can also run in backup mode, making it operational even if the main power should drain out.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 6 www.silabs.com 2.1.20 low energy timer (letimer) the unique letimer tm , the low energy timer, is a 16-bit timer that is available in energy mode em2 in addition to em1 and em0. because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. the letimer can be used to output a variety of waveforms with minimal software intervention. it is also connected to the real time counter (rtc), and can be configured to start counting on compare matches from the rtc. 2.1.21 pulse counter (pcnt) the pulse counter (pcnt) can be used for counting pulses on a single input or to decode quadrature encoded inputs. it runs off either the internal lfaclk or the pcntn_s0in pin as external clock source. the module may operate in energy mode em0 ? em3. 2.1.22 analog comparator (acmp) the analog comparator is used to compare the voltage of two analog inputs, with a digital output indi- cating which input voltage is higher. inputs can either be one of the selectable internal references or from external pins. response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.23 voltage comparator (vcmp) the voltage supply comparator is used to monitor the supply voltage from software. an interrupt can be generated when the supply falls below or rises above a programmable threshold. response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.24 analog to digital converter (adc) the adc is a successive approximation register (sar) architecture, with a resolution of up to 12 bits at up to one million samples per second. the integrated input mux can select inputs from 8 external pins and 6 internal signals. 2.1.25 digital to analog converter (dac) the digital to analog converter (dac) can convert a digital value to an analog output voltage. the dac is fully differential rail-to-rail, with 12-bit resolution. it has two single ended output buffers which can be combined into one differential output. the dac may be used for a number of different applications such as sensor interfaces or sound output. 2.1.26 operational amplifier (opamp) the EFM32LG280 features 3 operational amplifiers. the operational amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. the input can be set to pin, dac or opamp, whereas the output can be pin, opamp or adc. the current is programmable and the opamp has various internal configurations such as unity gain, programmable gain using internal resistors etc. 2.1.27 low energy sensor interface (lesense) the low energy sensor interface (lesense tm ), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. by controlling the analog comparators and dac, lesense is capable of supporting a wide range of sensors and measurement schemes, and can for instance mea- sure lc sensors, resistive sensors and capacitive sensors. lesense also includes a programmable
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 7 www.silabs.com fsm which enables simple processing of measurement results without cpu intervention. lesense is available in energy mode em2, in addition to em0 and em1, making it ideal for sensor monitoring in applications with a strict energy budget. 2.1.28 backup power domain the backup power domain is a separate power domain containing a backup real time counter, burtc, and a set of retention registers, available in all energy modes. this power domain can be configured to automatically change power source to a backup battery when the main power drains out. the backup power domain enables the EFM32LG280 to keep track of time and retain data, even if the main power source should drain out. 2.1.29 advanced encryption standard accelerator (aes) the aes accelerator performs aes encryption and decryption with 128-bit or 256-bit keys . encrypting or decrypting one 128-bit data block takes 52 hfcoreclk cycles with 128-bit keys and 75 hfcoreclk cycles with 256-bit keys . the aes module is an ahb slave which enables efficient access to the data and key registers. all write accesses to the aes module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.30 general purpose input/output (gpio) in the EFM32LG280, there are 85 general purpose input/output (gpio) pins, which are divided into ports with up to 16 pins each. these pins can individually be configured as either an output or input. more advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. the gpio pins can also be overridden by peripheral pin connections, like timer pwm outputs or usart communication, which can be routed to several locations on the device. the gpio supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. also, the input value of a pin can be routed through the peripheral reflex system to other peripherals. 2.2 configuration summary the features of the EFM32LG280 is a subset of the feature set described in the efm32lg reference manual. table 2.1 (p. 7 ) describes device specific implementation of the features. table 2.1. configuration summary module configuration pin connections cortex-m3 full configuration na dbg full configuration dbg_swclk, dbg_swdio, dbg_swo msc full configuration na dma full configuration na rmu full configuration na emu full configuration na cmu full configuration cmu_out0, cmu_out1 wdog full configuration na prs full configuration na ebi full configuration ebi_a[27:0], ebi_ad[15:0], ebi_ardy, ebi_ale, ebi_bl[1:0], ebi_cs[3:0],
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 8 www.silabs.com module configuration pin connections ebi_cstft, ebi_dclk, ebi_dten, ebi_hsnc, ebi_nandren, ebi_nandwen, ebi_ren, ebi_vsnc, ebi_wen i2c0 full configuration i2c0_sda, i2c0_scl i2c1 full configuration i2c1_sda, i2c1_scl usart0 full configuration with irda us0_tx, us0_rx. us0_clk, us0_cs usart1 full configuration with i2s us1_tx, us1_rx, us1_clk, us1_cs usart2 full configuration with i2s us2_tx, us2_rx, us2_clk, us2_cs uart0 full configuration u0_tx, u0_rx uart1 full configuration u1_tx, u1_rx leuart0 full configuration leu0_tx, leu0_rx leuart1 full configuration leu1_tx, leu1_rx timer0 full configuration with dti tim0_cc[2:0] , tim0_cdti[2:0] timer1 full configuration tim1_cc[2:0] timer2 full configuration tim2_cc[2:0] timer3 full configuration tim3_cc[2:0] rtc full configuration na burtc full configuration na letimer0 full configuration let0_o[1:0] pcnt0 full configuration, 16-bit count register pcnt0_s[1:0] pcnt1 full configuration, 8-bit count register pcnt1_s[1:0] pcnt2 full configuration, 8-bit count register pcnt2_s[1:0] acmp0 full configuration acmp0_ch[7:0], acmp0_o acmp1 full configuration acmp1_ch[7:0], acmp1_o vcmp full configuration na adc0 full configuration adc0_ch[7:0] dac0 full configuration dac0_out[1:0] , dac0_outxalt opamp full configuration outputs: opamp_outx, opamp_outxalt, inputs: opamp_px, opamp_nx aes full configuration na gpio 85 pins available pins are shown in table 4.3 (p. 67 ) 2.3 memory map the EFM32LG280 memory map is shown in figure 2.2 (p. 9 ) , with ram and flash sizes for the largest memory configuration.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 9 www.silabs.com figure 2.2. EFM32LG280 memory map with largest ram and flash sizes
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 10 www.silabs.com 3 electrical characteristics 3.1 test conditions 3.1.1 typical values the typical data are based on t amb =25c and v dd =3.0 v, as defined in table 3.2 (p. 10 ) , by simu- lation and/or technology characterisation unless otherwise specified. 3.1.2 minimum and maximum values the minimum and maximum values represent the worst conditions of ambient temperature, supply volt- age and frequencies, as defined in table 3.2 (p. 10 ) , by simulation and/or technology characterisa- tion unless otherwise specified. 3.2 absolute maximum ratings the absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. stress beyond the limits specified in table 3.1 (p. 10 ) may affect the device reliability or cause permanent damage to the device. functional operating conditions are given in table 3.2 (p. 10 ) . table 3.1. absolute maximum ratings symbol parameter condition min typ max unit t stg storage tempera- ture range -40 150 1 c t s maximum soldering temperature latest ipc/jedec j-std-020 standard 260 c v ddmax external main sup- ply voltage 0 3.8 v v iopin voltage on any i/o pin -0.3 v dd +0.3 v 1 based on programmed devices tested for 10000 hours at 150oc. storage temperature affects retention of preprogrammed cal- ibration values stored in flash. please refer to the flash section in the electrical characteristics for information on flash data re- tention for different temperatures. 3.3 general operating conditions 3.3.1 general operating conditions table 3.2. general operating conditions symbol parameter min typ max unit t amb ambient temperature range -40 85 c v ddop operating supply voltage 1.98 3.8 v f apb internal apb clock frequency 48 mhz f ahb internal ahb clock frequency 48 mhz
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 11 www.silabs.com 3.3.2 environmental table 3.3. environmental symbol parameter condition min typ max unit v esdhbm esd (human body model hbm) t amb =25c 2000 v v esdcdm esd (charged de- vice model, cdm) t amb =25c 750 v latch-up sensitivity passed: 100 ma/1.5 v supply (max) according to jedec jesd 78 method class ii, 85c. 3.4 current consumption table 3.4. current consumption symbol parameter condition min typ max unit 48 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v, t amb =25c 211 a/ mhz 48 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v, t amb =85c 211 a/ mhz 28 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 212 a/ mhz 28 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 213 a/ mhz 21 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 214 a/ mhz 21 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 215 a/ mhz 14 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 216 a/ mhz 14 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 217 a/ mhz 11 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 218 a/ mhz 11 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 219 a/ mhz 6.6 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 224 a/ mhz i em0 em0 current. no prescaling. running prime number cal- culation code from flash. (production test condition = 14 mhz) 6.6 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 224 a/ mhz
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 12 www.silabs.com symbol parameter condition min typ max unit 1.2 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 257 a/ mhz 1.2 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 261 a/ mhz 48 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v, t amb =25c 63 75 a/ mhz 48 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v, t amb =85c 65 76 a/ mhz 28 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 64 75 a/ mhz 28 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 65 77 a/ mhz 21 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 65 76 a/ mhz 21 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 66 78 a/ mhz 14 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 67 79 a/ mhz 14 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 68 82 a/ mhz 11 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 68 81 a/ mhz 11 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 70 83 a/ mhz 6.6 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 74 87 a/ mhz 6.6 mhz hfrco, all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 76 89 a/ mhz 1.2 mhz hfrco. all peripher- al clocks disabled, v dd = 3.0 v, t amb =25c 106 120 a/ mhz i em1 em1 current (pro- duction test condi- tion = 14 mhz) 1.2 mhz hfrco. all peripher- al clocks disabled, v dd = 3.0 v, t amb =85c 112 129 a/ mhz i em2 em2 current em2 current with rtc prescaled to 1 hz, 32.768 khz lfrco, v dd = 3.0 v, t amb =25c 0.95 1 1.7 1 a
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 13 www.silabs.com symbol parameter condition min typ max unit em2 current with rtc prescaled to 1 hz, 32.768 khz lfrco, v dd = 3.0 v, t amb =85c 3.0 1 4.0 1 a v dd = 3.0 v, t amb =25c 0.65 1.3 a i em3 em3 current v dd = 3.0 v, t amb =85c 2.65 4.0 a v dd = 3.0 v, t amb =25c 0.02 0.055 a i em4 em4 current v dd = 3.0 v, t amb =85c 0.44 0.9 a 1 using backup rtc. 3.4.1 em1 current consumption figure 3.1. em1 current consumption with all peripheral clocks disabled and hfxo running at 48mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 2.90 2.95 3.00 3.05 3.10 3.15 idd [m a] - 40c - 15c 5c 25c 45c 65c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 2.90 2.95 3.00 3.05 3.10 3.15 idd [m a] 2.0v 2.2v 2.4v 2.6v 2.8v 3.0v 3.2v 3.4v 3.6v 3.8v figure 3.2. em1 current consumption with all peripheral clocks disabled and hfrco running at 28mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.60 1.65 1.70 1.75 1.80 1.85 idd [m a] - 40c - 15c 5c 25c 45c 65c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 1.60 1.65 1.70 1.75 1.80 1.85 idd [m a] 2.0v 2.2v 2.4v 2.6v 2.8v 3.0v 3.2v 3.4v 3.6v 3.8v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 14 www.silabs.com figure 3.3. em1 current consumption with all peripheral clocks disabled and hfrco running at 21mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 idd [m a] - 40c - 15c 5c 25c 45c 65c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 idd [m a] 2.0v 2.2v 2.4v 2.6v 2.8v 3.0v 3.2v 3.4v 3.6v 3.8v figure 3.4. em1 current consumption with all peripheral clocks disabled and hfrco running at 14mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.86 0.88 0.90 0.92 0.94 0.96 0.98 idd [m a] - 40c - 15c 5c 25c 45c 65c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 0.86 0.88 0.90 0.92 0.94 0.96 0.98 idd [m a] 2.0v 2.2v 2.4v 2.6v 2.8v 3.0v 3.2v 3.4v 3.6v 3.8v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 15 www.silabs.com figure 3.5. em1 current consumption with all peripheral clocks disabled and hfrco running at 11mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.70 0.72 0.74 0.76 0.78 idd [m a] - 40c - 15c 5c 25c 45c 65c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 0.70 0.72 0.74 0.76 0.78 idd [m a] 2.0v 2.2v 2.4v 2.6v 2.8v 3.0v 3.2v 3.4v 3.6v 3.8v figure 3.6. em1 current consumption with all peripheral clocks disabled and hfrco running at 6.6mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 idd [m a] - 40c - 15c 5c 25c 45c 65c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 idd [m a] 2.0v 2.2v 2.4v 2.6v 2.8v 3.0v 3.2v 3.4v 3.6v 3.8v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 16 www.silabs.com figure 3.7. em1 current consumption with all peripheral clocks disabled and hfrco running at 1.2mhz 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.122 0.124 0.126 0.128 0.130 0.132 0.134 0.136 0.138 idd [m a] - 40c - 15c 5c 25c 45c 65c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 idd [m a] 2.0v 2.2v 2.4v 2.6v 2.8v 3.0v 3.2v 3.4v 3.6v 3.8v 3.4.2 em2 current consumption figure 3.8. em2 current consumption. rtc 1 prescaled to 1khz, 32.768 khz lfrco. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?20 0 20 40 60 80 tem perature [c] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 idd [ua] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v 1 using backup rtc.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 17 www.silabs.com 3.4.3 em3 current consumption figure 3.9. em3 current consumption. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?20 0 20 40 60 80 tem perature [c] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 idd [ua] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v 3.4.4 em4 current consumption figure 3.10. em4 current consumption. 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 idd [ua] - 40.0c - 15.0c 5.0c 25.0c 45.0c 65.0c 85.0c ?40 ?20 0 20 40 60 80 tem perature [c] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 idd [ua] vdd= 2.0v vdd= 2.2v vdd= 2.4v vdd= 2.6v vdd= 2.8v vdd= 3.0v vdd= 3.2v vdd= 3.4v vdd= 3.6v vdd= 3.8v 3.5 transition between energy modes the transition times are measured from the trigger to the first clock edge in the cpu. table 3.5. energy modes transitions symbol parameter min typ max unit t em10 transition time from em1 to em0 0 hf- core- clk cycles t em20 transition time from em2 to em0 2 s t em30 transition time from em3 to em0 2 s t em40 transition time from em4 to em0 163 s
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 18 www.silabs.com 3.6 power management the efm32lg requires the avdd_x, vdd_dreg and iovdd_x pins to be connected together (with optional filter) at the pcb level. for practical schematic recommendations, please see the application note, "an0002 efm32 hardware design considerations". table 3.6. power management symbol parameter condition min typ max unit v bodextthr- bod threshold on falling external sup- ply voltage 1.74 1.96 v v bodextthr+ bod threshold on rising external sup- ply voltage 1.85 1.98 v v porthr+ power-on reset (por) threshold on rising external sup- ply voltage 1.98 v t reset delay from reset is released until program execution starts applies to power-on reset, brown-out reset and pin reset. 163 s c decouple voltage regulator decoupling capaci- tor. x5r capacitor recommended. apply between decouple pin and ground 1 f 3.7 flash table 3.7. flash symbol parameter condition min typ max unit ec flash flash erase cycles before failure 20000 cycles t amb <150c 10000 h t amb <85c 10 years ret flash flash data retention t amb <70c 20 years t w_prog word (32-bit) pro- gramming time 20 s t perase page erase time 20 20.4 20.8 ms t derase device erase time 40 40.8 41.6 ms i erase erase current 7 1 ma i write write current 7 1 ma v flash supply voltage dur- ing flash erase and write 1.98 3.8 v 1 measured at 25c
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 19 www.silabs.com 3.8 general purpose input output table 3.8. gpio symbol parameter condition min typ max unit v ioil input low voltage 0.30v dd v v ioih input high voltage 0.70v dd v sourcing 0.1 ma, v dd =1.98 v, gpio_px_ctrl drivemode = lowest 0.80v dd v sourcing 0.1 ma, v dd =3.0 v, gpio_px_ctrl drivemode = lowest 0.90v dd v sourcing 1 ma, v dd =1.98 v, gpio_px_ctrl drivemode = low 0.85v dd v sourcing 1 ma, v dd =3.0 v, gpio_px_ctrl drivemode = low 0.90v dd v sourcing 6 ma, v dd =1.98 v, gpio_px_ctrl drivemode = standard 0.75v dd v sourcing 6 ma, v dd =3.0 v, gpio_px_ctrl drivemode = standard 0.85v dd v sourcing 20 ma, v dd =1.98 v, gpio_px_ctrl drivemode = high 0.60v dd v v iooh output high volt- age (production test condition = 3.0v, drivemode = standard) sourcing 20 ma, v dd =3.0 v, gpio_px_ctrl drivemode = high 0.80v dd v sinking 0.1 ma, v dd =1.98 v, gpio_px_ctrl drivemode = lowest 0.20v dd v sinking 0.1 ma, v dd =3.0 v, gpio_px_ctrl drivemode = lowest 0.10v dd v sinking 1 ma, v dd =1.98 v, gpio_px_ctrl drivemode = low 0.10v dd v sinking 1 ma, v dd =3.0 v, gpio_px_ctrl drivemode = low 0.05v dd v sinking 6 ma, v dd =1.98 v, gpio_px_ctrl drivemode = standard 0.30v dd v sinking 6 ma, v dd =3.0 v, gpio_px_ctrl drivemode = standard 0.20v dd v v iool output low voltage (production test condition = 3.0v, drivemode = standard) sinking 20 ma, v dd =1.98 v, gpio_px_ctrl drivemode = high 0.35v dd v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 20 www.silabs.com symbol parameter condition min typ max unit sinking 20 ma, v dd =3.0 v, gpio_px_ctrl drivemode = high 0.25v dd v i ioleak input leakage cur- rent high impedance io connected to ground or vdd 0.1 100 na r pu i/o pin pull-up resis- tor 40 kohm r pd i/o pin pull-down re- sistor 40 kohm r ioesd internal esd series resistor 200 ohm t ioglitch pulse width of puls- es to be removed by the glitch sup- pression filter 10 50 ns gpio_px_ctrl drivemode = lowest and load capaci- tance c l =12.5-25pf. 20+0.1c l 250 ns t ioof output fall time gpio_px_ctrl drivemode = low and load capacitance c l =350-600pf 20+0.1c l 250 ns v iohyst i/o pin hysteresis (v iothr+ - v iothr- ) v dd = 1.98 - 3.8 v 0.10v dd v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 21 www.silabs.com figure 3.11. typical low-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0.00 0.05 0.10 0.15 0.20 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 1 2 3 4 5 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 5 10 15 20 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 5 10 15 20 25 30 35 40 45 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 22 www.silabs.com figure 3.12. typical high-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?0.20 ?0.15 ?0.10 ?0.05 0.00 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?2.5 ?2.0 ?1.5 ?1.0 ?0.5 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?20 ?15 ?10 ?5 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 23 www.silabs.com figure 3.13. typical low-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0.0 0.1 0.2 0.3 0.4 0.5 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 2 4 6 8 10 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 5 10 15 20 25 30 35 40 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 24 www.silabs.com figure 3.14. typical high-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?6 ?5 ?4 ?3 ?2 ?1 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 25 www.silabs.com figure 3.15. typical low-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 2 4 6 8 10 12 14 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 26 www.silabs.com figure 3.16. typical high-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?0.8 ?0.7 ?0.6 ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 27 www.silabs.com 3.9 oscillators 3.9.1 lfxo table 3.9. lfxo symbol parameter condition min typ max unit f lfxo supported nominal crystal frequency 32.768 khz esr lfxo supported crystal equivalent series re- sistance (esr) 30 120 kohm c lfxol supported crystal external load range x 1 25 pf i lfxo current consump- tion for core and buffer after startup. esr=30 kohm, c l =10 pf, lfxoboost in cmu_ctrl is 1 190 na t lfxo start- up time. esr=30 kohm, c l =10 pf, 40% - 60% duty cycle has been reached, lfxoboost in cmu_ctrl is 1 400 ms 1 see minimum load capacitance (c lfxol ) requirement for safe crystal startup in energyaware designer in simplicity studio for safe startup of a given crystal, the energyaware designer in simplicity studio contains a tool to help users configure both load capacitance and software settings for using the lfxo. for details regarding the crystal configuration, the reader is referred to application note "an0016 efm32 oscillator design consideration". 3.9.2 hfxo table 3.10. hfxo symbol parameter condition min typ max unit f hfxo supported nominal crystal frequency 4 48 mhz crystal frequency 48 mhz 50 ohm crystal frequency 32 mhz 30 60 ohm esr hfxo supported crystal equivalent series re- sistance (esr) crystal frequency 4 mhz 400 1500 ohm g mhfxo the transconduc- tance of the hfxo input transistor at crystal startup hfxoboost in cmu_ctrl equals 0b11 20 ms c hfxol supported crystal external load range 5 25 pf 4 mhz: esr=400 ohm, c l =20 pf, hfxoboost in cmu_ctrl equals 0b11 85 a i hfxo current consump- tion for hfxo after startup 32 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 165 a t hfxo startup time 32 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 400 s
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 28 www.silabs.com 3.9.3 lfrco table 3.11. lfrco symbol parameter condition min typ max unit f lfrco oscillation frequen- cy , v dd = 3.0 v, t amb =25c 31.29 32.768 34.28 khz t lfrco startup time not in- cluding software calibration 150 s i lfrco current consump- tion 300 na tunestep l- frco frequency step for lsb change in tuning value 1.5 % figure 3.17. calibrated lfrco frequency vs temperature and supply voltage 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 30 32 34 36 38 40 42 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 30 32 34 36 38 40 42 frequency [mhz] 2.0 v 3.0 v 3.8 v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 29 www.silabs.com 3.9.4 hfrco table 3.12. hfrco symbol parameter condition min typ max unit 28 mhz frequency band 27.5 28.0 28.5 mhz 21 mhz frequency band 20.6 21.0 21.4 mhz 14 mhz frequency band 13.7 14.0 14.3 mhz 11 mhz frequency band 10.8 11.0 11.2 mhz 7 mhz frequency band 6.48 1 6.60 1 6.72 1 mhz f hfrco oscillation frequen- cy, v dd = 3.0 v, t amb =25c 1 mhz frequency band 1.15 2 1.20 2 1.25 2 mhz t hfrco_settling settling time after start-up f hfrco = 14 mhz 0.6 cycles f hfrco = 28 mhz 165 215 a f hfrco = 21 mhz 134 175 a f hfrco = 14 mhz 106 140 a f hfrco = 11 mhz 94 125 a f hfrco = 6.6 mhz 77 105 a i hfrco current consump- tion f hfrco = 1.2 mhz 25 40 a dc hfrco duty cycle f hfrco = 14 mhz 48.5 50 51 % tunestep h- frco frequency step for lsb change in tuning value 0.3 3 % 1 for devices with prod. rev. < 19, typ = 7mhz and min/max values not applicable. 2 for devices with prod. rev. < 19, typ = 1mhz and min/max values not applicable. 3 the tuning field in the cmu_hfrcoctrl register may be used to adjust the hfrco frequency. there is enough adjustment range to ensure that the frequency bands above 7 mhz will always have some overlap across supply voltage and temperature. by using a stable frequency reference such as the lfxo or hfxo, a firmware calibration routine can vary the tuning bits and the frequency band to maintain the hfrco frequency at any arbitrary value between 7 mhz and 28 mhz across operating conditions. figure 3.18. calibrated hfrco 1 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 frequency [mhz] 2.0 v 3.0 v 3.8 v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 30 www.silabs.com figure 3.19. calibrated hfrco 7 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 6.30 6.35 6.40 6.45 6.50 6.55 6.60 6.65 6.70 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 6.30 6.35 6.40 6.45 6.50 6.55 6.60 6.65 6.70 frequency [mhz] 2.0 v 3.0 v 3.8 v figure 3.20. calibrated hfrco 11 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 10.6 10.7 10.8 10.9 11.0 11.1 11.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 10.6 10.7 10.8 10.9 11.0 11.1 11.2 frequency [mhz] 2.0 v 3.0 v 3.8 v figure 3.21. calibrated hfrco 14 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 frequency [mhz] 2.0 v 3.0 v 3.8 v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 31 www.silabs.com figure 3.22. calibrated hfrco 21 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 20.2 20.4 20.6 20.8 21.0 21.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 20.2 20.4 20.6 20.8 21.0 21.2 frequency [mhz] 2.0 v 3.0 v 3.8 v figure 3.23. calibrated hfrco 28 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 frequency [mhz] 2.0 v 3.0 v 3.8 v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 32 www.silabs.com 3.9.5 auxhfrco table 3.13. auxhfrco symbol parameter condition min typ max unit 28 mhz frequency band 27.5 28.0 28.5 mhz 21 mhz frequency band 20.6 21.0 21.4 mhz 14 mhz frequency band 13.7 14.0 14.3 mhz 11 mhz frequency band 10.8 11.0 11.2 mhz 7 mhz frequency band 6.48 1 6.60 1 6.72 1 mhz f auxhfrco oscillation frequen- cy, v dd = 3.0 v, t amb =25c 1 mhz frequency band 1.15 2 1.20 2 1.25 2 mhz t auxhfrco_settling settling time after start-up f auxhfrco = 14 mhz 0.6 cycles dc auxhfrco duty cycle f auxhfrco = 14 mhz 48.5 50 51 % tunestep aux- hfrco frequency step for lsb change in tuning value 0.3 3 % 1 for devices with prod. rev. < 19, typ = 7mhz and min/max values not applicable. 2 for devices with prod. rev. < 19, typ = 1mhz and min/max values not applicable. 3 the tuning field in the cmu_auxhfrcoctrl register may be used to adjust the auxhfrco frequency. there is enough adjustment range to ensure that the frequency bands above 7 mhz will always have some overlap across supply voltage and temperature. by using a stable frequency reference such as the lfxo or hfxo, a firmware calibration routine can vary the tuning bits and the frequency band to maintain the auxhfrco frequency at any arbitrary value between 7 mhz and 28 mhz across operating conditions. 3.9.6 ulfrco table 3.14. ulfrco symbol parameter condition min typ max unit f ulfrco oscillation frequen- cy 25c, 3v 0.7 1.75 khz tc ulfrco temperature coeffi- cient 0.05 %/c vc ulfrco supply voltage co- efficient -18.2 %/v 3.10 analog digital converter (adc) table 3.15. adc symbol parameter condition min typ max unit single ended 0 v ref v v adcin input voltage range differential -v ref /2 v ref /2 v v adcrefin input range of exter- nal reference volt- age, single ended and differential 1.25 v dd v v adcrefin_ch7 input range of ex- ternal negative ref- erence voltage on channel 7 see v adcrefin 0 v dd - 1.1 v
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 33 www.silabs.com symbol parameter condition min typ max unit v adcrefin_ch6 input range of ex- ternal positive ref- erence voltage on channel 6 see v adcrefin 0.625 v dd v v adccmin common mode in- put range 0 v dd v i adcin input current 2pf sampling capacitors <100 na cmrr adc analog input com- mon mode rejection ratio 65 db 1 msamples/s, 12 bit, external reference 351 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b00 67 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b01 63 a i adc average active cur- rent 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b10 64 a i adcref current consump- tion of internal volt- age reference internal voltage reference 65 a c adcin input capacitance 2 pf r adcin input on resistance 1 mohm r adcfilt input rc filter resis- tance 10 kohm c adcfilt input rc filter/de- coupling capaci- tance 250 ff f adcclk adc clock fre- quency 13 mhz 6 bit 7 adc- clk cycles 8 bit 11 adc- clk cycles t adcconv conversion time 12 bit 13 adc- clk cycles t adcacq acquisition time programmable 1 256 adc- clk cycles t adcacqvdd3 required acquisi- tion time for vdd/3 reference 2 s
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 34 www.silabs.com symbol parameter condition min typ max unit startup time of ref- erence generator and adc core in normal mode 5 s t adcstart startup time of ref- erence generator and adc core in keepadcwarm mode 1 s 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 59 db 1 msamples/s, 12 bit, single ended, internal 2.5v reference 63 db 1 msamples/s, 12 bit, single ended, v dd reference 65 db 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 60 db 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 65 db 1 msamples/s, 12 bit, differen- tial, 5v reference 54 db 1 msamples/s, 12 bit, differen- tial, v dd reference 67 db 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 69 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 62 db 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 63 db 200 ksamples/s, 12 bit, single ended, v dd reference 67 db 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, v dd reference 63 66 db snr adc signal to noise ra- tio (snr) 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 70 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 58 db 1 msamples/s, 12 bit, single ended, internal 2.5v reference 62 db sinad adc signal-to-noise and distortion-ratio (sinad) 1 msamples/s, 12 bit, single ended, v dd reference 64 db
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 35 www.silabs.com symbol parameter condition min typ max unit 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 60 db 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 64 db 1 msamples/s, 12 bit, differen- tial, 5v reference 54 db 1 msamples/s, 12 bit, differen- tial, v dd reference 66 db 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 68 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 61 db 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 65 db 200 ksamples/s, 12 bit, single ended, v dd reference 66 db 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, v dd reference 62 66 db 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 69 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 64 dbc 1 msamples/s, 12 bit, single ended, internal 2.5v reference 76 dbc 1 msamples/s, 12 bit, single ended, v dd reference 73 dbc 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 66 dbc 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 77 dbc 1 msamples/s, 12 bit, differen- tial, v dd reference 76 dbc 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 75 dbc 1 msamples/s, 12 bit, differen- tial, 5v reference 69 dbc 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 75 dbc sfdr adc spurious-free dy- namic range (sf- dr) 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 75 dbc
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 36 www.silabs.com symbol parameter condition min typ max unit 200 ksamples/s, 12 bit, single ended, v dd reference 76 dbc 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, 5v reference 78 dbc 200 ksamples/s, 12 bit, differ- ential, v dd reference 68 79 dbc 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 79 dbc after calibration, single ended -3.5 0.3 3 mv v adcoffset offset voltage after calibration, differential 0.3 mv -1.92 mv/c tgrad adcth thermometer out- put gradient -6.3 adc codes/ c dnl adc differential non-lin- earity (dnl) -1 0.7 4 lsb inl adc integral non-linear- ity (inl), end point method 1.2 3 lsb mc adc no missing codes 11.999 1 12 bits 1.25v reference 0.01 2 0.033 3 %/c gain ed gain error drift 2.5v reference 0.01 2 0.03 3 %/c 1.25v reference 0.2 2 0.7 3 lsb/c offset ed offset error drift 2.5v reference 0.2 2 0.62 3 lsb/c 1 on the average every adc will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. there will be no missing code around 2048, and in spite of the missing code the adc will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. around the one code that is missing, the neighbour codes will look wider in the dnl plot. the spectra will show spurs on the level of -78dbc for a full scale input for chips that have the missing code issue. 2 typical numbers given by abs(mean) / (85 - 25). 3 max number given by (abs(mean) + 3x stddev) / (85 - 25). the integral non-linearity (inl) and differential non-linearity parameters are explained in figure 3.24 (p. 37 ) and figure 3.25 (p. 37 ) , respectively.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 37 www.silabs.com figure 3.24. integral non-linearity (inl) ideal transfer curve digital ouput code analog input inl= | [(v d - v ss )/ v lsbideal ] - d| where 0 < d < 2 n - 1 0 1 2 3 4092 4093 4094 4095 v offset actual adc tranfer function before offset and gain correction actual adc tranfer function after offset and gain correction inl error ( end point inl) figure 3.25. differential non-linearity (dnl) ideal transfer curve digital ouput code analog input dnl= | [(v d + 1 - v d )/ v lsbideal ] - 1| where 0 < d < 2 n - 2 0 1 2 3 4092 4093 4094 4095 actual transfer function with one m issing code . 4 5 full scale range 0.5 lsb ideal code center ideal 50% transition point ideal spacing between two adjacent codes v lsbideal = 1 lsb code width = 2 lsb dnl = 1 lsb example: adjacent input value v d + 1 corrresponds to digital output code d + 1 example: input value v d corrresponds to digital output code d
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 38 www.silabs.com 3.10.1 typical performance figure 3.26. adc frequency spectrum, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 39 www.silabs.com figure 3.27. adc integral linearity error vs code, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 40 www.silabs.com figure 3.28. adc differential linearity error vs code, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 41 www.silabs.com figure 3.29. adc absolute offset, common mode = vdd /2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd (v) ?4 ?3 ?2 ?1 0 1 2 3 4 5 actual offset [lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs supply voltage, temp = 25c ?40 ?15 5 25 45 65 85 tem p (c) ?1.0 ?0.5 0.0 0.5 1.0 1.5 2.0 actual offset [lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs temperature, vdd = 3v figure 3.30. adc dynamic performance vs temperature for all adc references, vdd = 3v ?40 ?15 5 25 45 65 85 tem perature [c] 63 64 65 66 67 68 69 70 71 snr [db] 1v25 2v5 vdd 5vdiff 2xvddvss signal to noise ratio (snr) ?40 ?15 5 25 45 65 85 tem perature [c] 78.0 78.2 78.4 78.6 78.8 79.0 79.2 79.4 sfdr [db] 1v25 2v5 vdd 5vdiff 2xvddvss spurious-free dynamic range (sfdr)
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 42 www.silabs.com figure 3.31. adc temperature sensor readout ?40 ?25 ?15 ?5 5 15 25 35 45 55 65 75 85 tem perature [c] 2100 2200 2300 2400 2500 2600 sensor readout vdd= 2.0 vdd= 3.0 vdd= 3.8 3.11 digital analog converter (dac) table 3.16. dac symbol parameter condition min typ max unit vdd voltage reference, single ended 0 v dd v v dacout output voltage range vdd voltage reference, differ- ential -v dd v dd v v daccm output common mode voltage range 0 v dd v 500 ksamples/s, 12 bit 400 1 a 100 ksamples/s, 12 bit 200 1 a i dac active current in- cluding references for 2 channels 1 ksamples/s 12 bit normal 17 1 a sr dac sample rate 500 ksam- ples/s continuous mode 1000 khz sample/hold mode 250 khz f dac dac clock frequen- cy sample/off mode 250 khz cyc dacconv clock cyckles per conversion 2 t dacconv conversion time 2 s t dacsettle settling time 5 s 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 58 db 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 59 db snr dac signal to noise ra- tio (snr) 500 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 58 db
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 43 www.silabs.com symbol parameter condition min typ max unit 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 58 db 500 ksamples/s, 12 bit, differ- ential, v dd reference 59 db 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 57 db 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 54 db 500 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 56 db 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 53 db sndr dac signal to noise- pulse distortion ra- tio (sndr) 500 ksamples/s, 12 bit, differ- ential, v dd reference 55 db 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 62 dbc 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 56 dbc 500 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 61 dbc 500 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 55 dbc sfdr dac spurious-free dynamic range(sfdr) 500 ksamples/s, 12 bit, differ- ential, v dd reference 60 dbc after calibration, single ended 2 9 mv v dacoffset offset voltage after calibration, differential 2 mv dnl dac differential non-lin- earity 1 lsb inl dac integral non-lineari- ty 5 lsb mc dac no missing codes 12 bits 1 measured with a static input code and no loading on the output. 3.12 operational amplifier (opamp) the electrical characteristics for the operational amplifiers are based on simulations. table 3.17. opamp symbol parameter condition min typ max unit (opa2)biasprog=0xf, (opa2)halfbias=0x0, unity gain 370 460 a i opamp active current (opa2)biasprog=0x7, (opa2)halfbias=0x1, unity gain 95 135 a
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 44 www.silabs.com symbol parameter condition min typ max unit (opa2)biasprog=0x0, (opa2)halfbias=0x1, unity gain 13 25 a (opa2)biasprog=0xf, (opa2)halfbias=0x0 101 db (opa2)biasprog=0x7, (opa2)halfbias=0x1 98 db g ol open loop gain (opa2)biasprog=0x0, (opa2)halfbias=0x1 91 db (opa2)biasprog=0xf, (opa2)halfbias=0x0 6.1 mhz (opa2)biasprog=0x7, (opa2)halfbias=0x1 1.8 mhz gbw opamp gain bandwidth product (opa2)biasprog=0x0, (opa2)halfbias=0x1 0.25 mhz (opa2)biasprog=0xf, (opa2)halfbias=0x0, c l =75 pf 64 (opa2)biasprog=0x7, (opa2)halfbias=0x1, c l =75 pf 58 pm opamp phase margin (opa2)biasprog=0x0, (opa2)halfbias=0x1, c l =75 pf 58 r input input resistance 100 mohm r load load resistance 200 ohm i load_dc dc load current 11 ma opaxhcmdis=0 v ss v dd v v input input voltage opaxhcmdis=1 v ss v dd -1.2 v v output output voltage v ss v dd v unity gain, v ss ...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 45 www.silabs.com symbol parameter condition min typ max unit v out =1v, ressel=0, 0.1 hz ...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 46 www.silabs.com figure 3.34. opamp negative power supply rejection ratio figure 3.35. opamp voltage noise spectral density (unity gain) v out =1v figure 3.36. opamp voltage noise spectral density (non-unity gain)
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 47 www.silabs.com 3.13 analog comparator (acmp) table 3.18. acmp symbol parameter condition min typ max unit v acmpin input voltage range 0 v dd v v acmpcm acmp common mode voltage range 0 v dd v biasprog=0b0000, full- bias=0 and halfbias=1 in acmpn_ctrl register 0.1 0.4 a biasprog=0b1111, full- bias=0 and halfbias=0 in acmpn_ctrl register 2.87 15 a i acmp active current biasprog=0b1111, full- bias=1 and halfbias=0 in acmpn_ctrl register 195 520 a internal voltage reference off. using external voltage refer- ence 0 a i acmpref current consump- tion of internal volt- age reference internal voltage reference 5 a v acmpoffset offset voltage biasprog= 0b1010, full- bias=0 and halfbias=0 in acmpn_ctrl register -12 0 12 mv v acmphyst acmp hysteresis programmable 17 mv csressel=0b00 in acmpn_inputsel 39 kohm csressel=0b01 in acmpn_inputsel 71 kohm csressel=0b10 in acmpn_inputsel 104 kohm r csres capacitive sense internal resistance csressel=0b11 in acmpn_inputsel 136 kohm t acmpstart startup time 10 s the total acmp current is the sum of the contributions from the acmp and its internal voltage reference as given in equation 3.1 (p. 47 ) . i acmpref is zero if an external voltage reference is used. total acmp active current i acmptotal = i acmp + i acmpref (3.1)
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 48 www.silabs.com figure 3.37. acmp characteristics, vdd = 3v, temp = 25c, fullbias = 0, halfbias = 1 0 4 8 12 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 current [ua] current consumption, hystsel = 4 0 2 4 6 8 10 12 14 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 response tim e [us] hystsel= 0.0 hystsel= 2.0 hystsel= 4.0 hystsel= 6.0 response time 0 1 2 3 4 5 6 7 acmp_ctrl_hystsel 0 20 40 60 80 100 hysteresis [m v] biasprog= 0.0 biasprog= 4.0 biasprog= 8.0 biasprog= 12.0 hysteresis
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 49 www.silabs.com 3.14 voltage comparator (vcmp) table 3.19. vcmp symbol parameter condition min typ max unit v vcmpin input voltage range v dd v v vcmpcm vcmp common mode voltage range v dd v biasprog=0b0000 and halfbias=1 in vcmpn_ctrl register 0.3 0.6 a i vcmp active current biasprog=0b1111 and halfbias=0 in vcmpn_ctrl register. lpref=0. 22 35 a t vcmpref startup time refer- ence generator normal 10 s single ended 10 mv v vcmpoffset offset voltage differential 10 mv v vcmphyst vcmp hysteresis 61 210 mv t vcmpstart startup time 10 s the v dd trigger level can be configured by setting the triglevel field of the vcmp_ctrl register in accordance with the following equation: vcmp trigger level as a function of level setting v dd trigger level =1.667v+0.034 triglevel (3.2) 3.15 ebi figure 3.38. ebi write enable timing wrsetup ( 0, 1, 2, ...) ebi_bl ebi_bl[n- 1:0] z ebi_a ebi_a[n- 1:0] z data[15:0] ebi_ad[15:0] z ebi_csn ebi_wen wrstrb ( 1, 2, 3, ...) wrhold ( 0, 1, 2, ...) t osu _ wen t osu _ wen t osu _ wen t osu _ wen t width _ wen t oh _ wen t oh _ wen t oh _ wen t oh _ wen
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 50 www.silabs.com table 3.20. ebi write enable timing symbol parameter min typ max unit t oh_wen 1 2 3 4 output hold time, from trailing ebi_wen/ ebi_nandwen edge to ebi_ad, ebi_a, ebi_csn, ebi_bln invalid -6.00 + (wrhold * t hfcoreclk ) ns t osu_wen 1 2 3 4 5 output setup time, from ebi_ad, ebi_a, ebi_csn, ebi_bln valid to leading ebi_wen/ ebi_nandwen edge -14.00 + (wrsetup * t hfcoreclk ) ns t width_wen 1 2 3 4 5 ebi_wen/ebi_nandwen pulse width -7.00 + ((wrstrb +1) * t hfcoreclk ) ns 1 applies for all addressing modes (figure only shows d16 addressing mode) 2 applies for both ebi_wen and ebi_nanwen (figure only shows ebi_wen) 3 applies for all polarities (figure only shows active low signals) 4 measurement done at 10% and 90% of v dd (figure shows 50% of vdd ) 5 the figure shows the timing for the case that the half strobe length functionality is not used, i.e. halfwe=0. the leading edge of ebi_wen can be moved to the right by setting halfwe=1. this decreases the length of t width_wen and increases the length of t osu_wen by 1/2 * t hfclknodiv . figure 3.39. ebi address latch enable related output timing t osu _ alen addrsetup ( 1, 2, 3, ...) addr[16:1] addrhold ( 0, 1, 2, ...) wrsetup ( 0, 1, 2, ...) wrstrb ( 1, 2, 3, ...) wrhold ( 0, 1, 2, ...) z data[15:0] t width _ alen t width _ alen ebi_ad[15:0] ebi_ale ebi_csn ebi_wen table 3.21. ebi address latch enable related output timing symbol parameter min typ max unit t oh_alen 1 2 3 4 output hold time, from trailing ebi_ale edge to ebi_ad invalid -6.00 + (ad- drhold 5 * t hfcore- clk ) ns t osu_alen 1 2 4 output setup time, from ebi_ad valid to leading ebi_ale edge -13.00 + (0 * t hfcore- clk ) ns t width_alen 1 2 3 4 ebi_alen pulse width -7.00 + (addrset- up+1) * t hfcoreclk ) ns 1 applies to addressing modes d8a24ale and d16a16ale (figure only shows d16a16ale) 2 applies for all polarities (figure only shows active low signals) 3 the figure shows the timing for the case that the half strobe length functionality is not used, i.e. halfale=0. the trailing edge of ebi_ale can be moved to the left by setting halfale=1. this decreases the length of t width_alen and increases the length of toh_alen by t hfcoreclk - 1/2 * t hfclknodiv . 4 measurement done at 10% and 90% of v dd (figure shows 50% of vdd ) 5 figure only shows a write operation. for a multiplexed read operation the address hold time is controlled via the rdsetup state instead of via the addrhold state.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 51 www.silabs.com figure 3.40. ebi read enable related output timing ebi_bl[1:0] rdsetup ( 0, 1, 2, ...) ebi_a[27:0] ebi_bl ebi_a ebi_ad[15:8] addr[7:0] ebi_csn ebi_ad[7:0] ebi_ren rdstrb ( 1, 2, 3, ...) rdhold ( 0, 1, 2, ...) t su _ ren t su _ ren t su _ ren t su _ ren t width _ ren z z t h _ ren t h _ ren t h _ ren t h _ ren z z z data[7:0] table 3.22. ebi read enable related output timing symbol parameter min typ max unit t oh_ren 1 2 3 4 output hold time, from trailing ebi_ren/ ebi_nandren edge to ebi_ad, ebi_a, ebi_csn, ebi_bln invalid -10.00 + (rdhold * t hfcoreclk ) ns t osu_ren 1 2 3 4 5 output setup time, from ebi_ad, ebi_a, ebi_csn, ebi_bln valid to leading ebi_ren/ebi_nandren edge -10.00 + (rdsetup * t hfcoreclk ) ns t width_ren 1 2 3 4 5 6 ebi_ren pulse width -9.00 + ((rd- strb+1) * t hfcore- clk ) ns 1 applies for all addressing modes (figure only shows d8a8. output timing for ebi_ad only applies to multiplexed addressing modes d8a24ale and d16a16ale) 2 applies for both ebi_ren and ebi_nandren (figure only shows ebi_ren) 3 applies for all polarities (figure only shows active low signals) 4 measurement done at 10% and 90% of v dd (figure shows 50% of vdd ) 5 the figure shows the timing for the case that the half strobe length functionality is not used, i.e. halfre=0. the leading edge of ebi_ren can be moved to the right by setting halfre=1. this decreases the length of t width_ren and increases the length of t osu_ren by 1/2 * t hfclknodiv . 6 when page mode is used, rdstrb is replaced by rdpa for page hits.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 52 www.silabs.com figure 3.41. ebi read enable related timing requirements ebi_a[n- 1:0] ebi_ad[15:0] addr[n:1] rdsetup ( 0, 1, 2, ...) ebi_csn ebi_ren rdstrb ( 1, 2, 3, ...) rdhold ( 0, 1, 2, ...) t su _ ren t h _ ren z z data[15:0] z table 3.23. ebi read enable related timing requirements symbol parameter min typ max unit t su_ren 1 2 3 4 setup time, from ebi_ad valid to trailing ebi_ren edge 37 ns t h_ren 1 2 3 4 hold time, from trailing ebi_ren edge to ebi_ad invalid -1 ns 1 applies for all addressing modes (figure only shows d16a8). 2 applies for both ebi_ren and ebi_nandren (figure only shows ebi_ren) 3 applies for all polarities (figure only shows active low signals) 4 measurement done at 10% and 90% of v dd (figure shows 50% of vdd ) figure 3.42. ebi ready/wait related timing requirements ebi_rdy ebi_ad[15:0] ebi_csn ebi_ren rdsetup ( 0, 1, 2, ...) rdstrb ( 1, 2, 3, ...) sync ( 3) rdhold ( 0, 1, 2, ...) z data[15:0] t su _ ardy t h _ ardy table 3.24. ebi ready/wait related timing requirements symbol parameter min typ max unit t su_ardy 1 2 3 4 setup time, from ebi_ardy valid to trailing ebi_ren, ebi_wen edge 37 + (3 * t hfcoreclk ) ns
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 53 www.silabs.com symbol parameter min typ max unit t h_ardy 1 2 3 4 hold time, from trailing ebi_ren, ebi_wen edge to ebi_ardy invalid -1 + (3 * t hfcoreclk ) ns 1 applies for all addressing modes (figure only shows d16a8.) 2 applies for ebi_ren, ebi_wen (figure only shows ebi_ren) 3 applies for all polarities (figure only shows active low signals) 4 measurement done at 10% and 90% of v dd (figure shows 50% of vdd ) 3.16 i2c table 3.25. i2c standard-mode (sm) symbol parameter min typ max unit f scl scl clock frequency 0 100 1 khz t low scl clock low time 4.7 s t high scl clock high time 4.0 s t su,dat sda set-up time 250 ns t hd,dat sda hold time 8 3450 2 , 3 ns t su,sta repeated start condition set-up time 4.7 s t hd,sta (repeated) start condition hold time 4.0 s t su,sto stop condition set-up time 4.0 s t buf bus free time between a stop and a start condi- tion 4.7 s 1 for the minimum hfperclk frequency required in standard-mode, see the i2c chapter in the efm32lg reference manual. 2 the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). 3 when transmitting data, this number is guaranteed only when i2cn_clkdiv < ((3450*10 -9 [s] * f hfperclk [hz]) - 4). table 3.26. i2c fast-mode (fm) symbol parameter min typ max unit f scl scl clock frequency 0 400 1 khz t low scl clock low time 1.3 s t high scl clock high time 0.6 s t su,dat sda set-up time 100 ns t hd,dat sda hold time 8 900 2 , 3 ns t su,sta repeated start condition set-up time 0.6 s t hd,sta (repeated) start condition hold time 0.6 s t su,sto stop condition set-up time 0.6 s t buf bus free time between a stop and a start condi- tion 1.3 s 1 for the minimum hfperclk frequency required in fast-mode, see the i2c chapter in the efm32lg reference manual. 2 the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). 3 when transmitting data, this number is guaranteed only when i2cn_clkdiv < ((900*10 -9 [s] * f hfperclk [hz]) - 4).
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 54 www.silabs.com table 3.27. i2c fast-mode plus (fm+) symbol parameter min typ max unit f scl scl clock frequency 0 1000 1 khz t low scl clock low time 0.5 s t high scl clock high time 0.26 s t su,dat sda set-up time 50 ns t hd,dat sda hold time 8 ns t su,sta repeated start condition set-up time 0.26 s t hd,sta (repeated) start condition hold time 0.26 s t su,sto stop condition set-up time 0.26 s t buf bus free time between a stop and a start condi- tion 0.5 s 1 for the minimum hfperclk frequency required in fast-mode plus, see the i2c chapter in the efm32lg reference manual. 3.17 usart spi figure 3.43. spi master timing cs sclk clkpol = 0 mosi miso t cs _ mo t h _ mi t su _ mi t sckl _ mo t sclk sclk clkpol = 1 table 3.28. spi master timing symbol parameter condition min typ max unit t sclk 1 2 sclk period 2 * t hfper- clk ns t cs_mo 1 2 cs to mosi -2.00 2.00 ns t sclk_mo 1 2 sclk to mosi -1.00 3.00 ns t su_mi 1 2 miso setup time iovdd = 3.0 v 36.00 ns t h_mi 1 2 miso hold time -6.00 ns 1 applies for both clkpha = 0 and clkpha = 1 (figure only shows clkpha = 0) 2 measurement done at 10% and 90% of v dd (figure shows 50% of v dd )
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 55 www.silabs.com table 3.29. spi master timing with sssearly and smsdelay symbol parameter condition min typ max unit t sclk 1 2 sclk period 2 * t hfper- clk ns t cs_mo 1 2 cs to mosi -2.00 2.00 ns t sclk_mo 1 2 sclk to mosi -1.00 3.00 ns t su_mi 1 2 miso setup time iovdd = 3.0 v -32.00 ns t h_mi 1 2 miso hold time 63.00 ns 1 applies for both clkpha = 0 and clkpha = 1 (figure only shows clkpha = 0) 2 measurement done at 10% and 90% of v dd (figure shows 50% of vdd ) figure 3.44. spi slave timing cs sclk clkpol = 0 mosi miso t cs _ act _ mi t sclk _ hi t sclk t su _ mo t h _ mo t sclk _ mi t cs _ dis _ mi t sclk _ lo sclk clkpol = 1 table 3.30. spi slave timing symbol parameter min typ max unit t sclk_sl 1 2 sckl period 6 * t hfper- clk ns t sclk_hi 1 2 sclk high period 3 * t hfper- clk ns t sclk_lo 1 2 sclk low period 3 * t hfper- clk ns t cs_act_mi 1 2 cs active to miso 5.00 35.00 ns t cs_dis_mi 1 2 cs disable to miso 5.00 35.00 ns t su_mo 1 2 mosi setup time 5.00 ns t h_mo 1 2 mosi hold time 2 + 2 * t hf- perclk ns t sclk_mi 1 2 sclk to miso 7 + t hfper- clk 42 + 2 * t hfperclk ns 1 applies for both clkpha = 0 and clkpha = 1 (figure only shows clkpha = 0) 2 measurement done at 10% and 90% of v dd (figure shows 50% of v dd ) table 3.31. spi slave timing with sssearly and smsdelay symbol parameter min typ max unit t sclk_sl 1 2 sckl period 6 * t hfper- clk ns
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 56 www.silabs.com symbol parameter min typ max unit t sclk_hi 1 2 sclk high period 3 * t hfper- clk ns t sclk_lo 1 2 sclk low period 3 * t hfper- clk ns t cs_act_mi 1 2 cs active to miso 5.00 35.00 ns t cs_dis_mi 1 2 cs disable to miso 5.00 35.00 ns t su_mo 1 2 mosi setup time 5.00 ns t h_mo 1 2 mosi hold time 2 + 2 * t hf- perclk ns t sclk_mi 1 2 sclk to miso -264 + t hf- perclk -234 + 2 * t hfperclk ns 1 applies for both clkpha = 0 and clkpha = 1 (figure only shows clkpha = 0) 2 measurement done at 10% and 90% of v dd (figure shows 50% of vdd ) 3.18 digital peripherals table 3.32. digital peripherals symbol parameter condition min typ max unit i usart usart current usart idle current, clock en- abled 4.0 a/ mhz i uart uart current uart idle current, clock en- abled 3.8 a/ mhz i leuart leuart current leuart idle current, clock en- abled 194.0 na i i2c i2c current i2c idle current, clock enabled 7.6 a/ mhz i timer timer current timer_0 idle current, clock enabled 6.5 a/ mhz i letimer letimer current letimer idle current, clock enabled 85.8 na i pcnt pcnt current pcnt idle current, clock en- abled 91.4 na i rtc rtc current rtc idle current, clock enabled 54.6 na i aes aes current aes idle current, clock enabled 1.8 a/ mhz i gpio gpio current gpio idle current, clock en- abled 3.4 a/ mhz i ebi ebi current ebi idle current, clock enabled 6.5 a/ mhz i prs prs current prs idle current 3.9 a/ mhz i dma dma current clock enable 10.9 a/ mhz
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 57 www.silabs.com 4 pinout and package note please refer to the application note "an0002 efm32 hardware design considerations" for guidelines on designing printed circuit boards (pcb's) for the EFM32LG280. 4.1 pinout the EFM32LG280 pinout is shown in figure 4.1 (p. 57 ) and table 4.1 (p. 57 ) . alternate locations are denoted by "#" followed by the location number (multiple locations on the same pin are split with "/"). alternate locations can be configured in the location bitfield in the *_route register in the module in question. figure 4.1. EFM32LG280 pinout (top view, not to scale) table 4.1. device pinout lqfp100 pin# and name pin alternate functionality / description pin # pin name analog ebi timers communication other 1 pa0 ebi_ad09 #0/1/2 tim0_cc0 #0/1/4 leu0_rx #4 i2c0_sda #0 prs_ch0 #0 gpio_em4wu0 2 pa1 ebi_ad10 #0/1/2 tim0_cc1 #0/1 i2c0_scl #0 cmu_clk1 #0 prs_ch1 #0 3 pa2 ebi_ad11 #0/1/2 tim0_cc2 #0/1 cmu_clk0 #0
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 58 www.silabs.com lqfp100 pin# and name pin alternate functionality / description pin # pin name analog ebi timers communication other etm_td0 #3 4 pa3 ebi_ad12 #0/1/2 tim0_cdti0 #0 u0_tx #2 les_altex2 #0 etm_td1 #3 5 pa4 ebi_ad13 #0/1/2 tim0_cdti1 #0 u0_rx #2 les_altex3 #0 etm_td2 #3 6 pa5 ebi_ad14 #0/1/2 tim0_cdti2 #0 leu1_tx #1 les_altex4 #0 etm_td3 #3 7 pa6 ebi_ad15 #0/1/2 leu1_rx #1 etm_tclk #3 gpio_em4wu1 8 iovdd_0 digital io power supply 0. 9 pb0 ebi_a16 #0/1/2 tim1_cc0 #2 10 pb1 ebi_a17 #0/1/2 tim1_cc1 #2 11 pb2 ebi_a18 #0/1/2 tim1_cc2 #2 12 pb3 ebi_a19 #0/1/2 pcnt1_s0in #1 us2_tx #1 13 pb4 ebi_a20 #0/1/2 pcnt1_s1in #1 us2_rx #1 14 pb5 ebi_a21 #0/1/2 us2_clk #1 15 pb6 ebi_a22 #0/1/2 us2_cs #1 16 vss ground 17 iovdd_1 digital io power supply 1. 18 pc0 acmp0_ch0 dac0_out0alt #0/ opamp_out0alt ebi_a23 #0/1/2 tim0_cc1 #4 pcnt0_s0in #2 us0_tx #5 us1_tx #0 i2c0_sda #4 les_ch0 #0 prs_ch2 #0 19 pc1 acmp0_ch1 dac0_out0alt #1/ opamp_out0alt ebi_a24 #0/1/2 tim0_cc2 #4 pcnt0_s1in #2 us0_rx #5 us1_rx #0 i2c0_scl #4 les_ch1 #0 prs_ch3 #0 20 pc2 acmp0_ch2 dac0_out0alt #2/ opamp_out0alt ebi_a25 #0/1/2 tim0_cdti0 #4 us2_tx #0 les_ch2 #0 21 pc3 acmp0_ch3 dac0_out0alt #3/ opamp_out0alt ebi_nandren #0/1/2 tim0_cdti1 #4 us2_rx #0 les_ch3 #0 22 pc4 acmp0_ch4 dac0_p0 / opamp_p0 ebi_a26 #0/1/2 tim0_cdti2 #4 letim0_out0 #3 pcnt1_s0in #0 us2_clk #0 i2c1_sda #0 les_ch4 #0 23 pc5 acmp0_ch5 dac0_n0 / opamp_n0 ebi_nandwen #0/1/2 letim0_out1 #3 pcnt1_s1in #0 us2_cs #0 i2c1_scl #0 les_ch5 #0 24 pb7 lfxtal_p tim1_cc0 #3 us0_tx #4 us1_clk #0 25 pb8 lfxtal_n tim1_cc1 #3 us0_rx #4 us1_cs #0 26 pa7 ebi_cstft #0/1/2 27 pa8 ebi_dclk #0/1/2 tim2_cc0 #0 28 pa9 ebi_dten #0/1/2 tim2_cc1 #0 29 pa10 ebi_vsnc #0/1/2 tim2_cc2 #0 30 pa11 ebi_hsnc #0/1/2 31 iovdd_2 digital io power supply 2. 32 vss ground
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 59 www.silabs.com lqfp100 pin# and name pin alternate functionality / description pin # pin name analog ebi timers communication other 33 pa12 ebi_a00 #0/1/2 tim2_cc0 #1 34 pa13 ebi_a01 #0/1/2 tim2_cc1 #1 35 pa14 ebi_a02 #0/1/2 tim2_cc2 #1 36 resetn reset input, active low. to apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. 37 pb9 ebi_a03 #0/1/2 u1_tx #2 38 pb10 ebi_a04 #0/1/2 u1_rx #2 39 pb11 dac0_out0 / opamp_out0 tim1_cc2 #3 letim0_out0 #1 i2c1_sda #1 40 pb12 dac0_out1 / opamp_out1 letim0_out1 #1 i2c1_scl #1 41 avdd_1 analog power supply 1. 42 pb13 hfxtal_p us0_clk #4/5 leu0_tx #1 43 pb14 hfxtal_n us0_cs #4/5 leu0_rx #1 44 iovdd_3 digital io power supply 3. 45 avdd_0 analog power supply 0. 46 pd0 adc0_ch0 dac0_out0alt #4/ opamp_out0alt opamp_out2 #1 pcnt2_s0in #0 us1_tx #1 47 pd1 adc0_ch1 dac0_out1alt #4/ opamp_out1alt tim0_cc0 #3 pcnt2_s1in #0 us1_rx #1 dbg_swo #2 48 pd2 adc0_ch2 ebi_a27 #0/1/2 tim0_cc1 #3 us1_clk #1 dbg_swo #3 49 pd3 adc0_ch3 opamp_n2 tim0_cc2 #3 us1_cs #1 etm_td1 #0/2 50 pd4 adc0_ch4 opamp_p2 leu0_tx #0 etm_td2 #0/2 51 pd5 adc0_ch5 opamp_out2 #0 leu0_rx #0 etm_td3 #0/2 52 pd6 adc0_ch6 dac0_p1 / opamp_p1 tim1_cc0 #4 letim0_out0 #0 pcnt0_s0in #3 us1_rx #2 i2c0_sda #1 les_altex0 #0 acmp0_o #2 etm_td0 #0 53 pd7 adc0_ch7 dac0_n1 / opamp_n1 tim1_cc1 #4 letim0_out1 #0 pcnt0_s1in #3 us1_tx #2 i2c0_scl #1 cmu_clk0 #2 les_altex1 #0 acmp1_o #2 etm_tclk #0 54 pd8 bu_vin cmu_clk1 #1 55 pc6 acmp0_ch6 ebi_a05 #0/1/2 leu1_tx #0 i2c0_sda #2 les_ch6 #0 etm_tclk #2 56 pc7 acmp0_ch7 ebi_a06 #0/1/2 leu1_rx #0 i2c0_scl #2 les_ch7 #0 etm_td0 #2 57 vdd_dreg power supply for on-chip voltage regulator. 58 vss ground 59 decouple decouple output for on-chip voltage regulator. an external capacitance of size c decouple is required at this pin. 60 pe0 ebi_a07 #0/1/2 tim3_cc0 #1 pcnt0_s0in #1 u0_tx #1 i2c1_sda #2
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 60 www.silabs.com lqfp100 pin# and name pin alternate functionality / description pin # pin name analog ebi timers communication other 61 pe1 ebi_a08 #0/1/2 tim3_cc1 #1 pcnt0_s1in #1 u0_rx #1 i2c1_scl #2 62 pe2 bu_vout ebi_a09 #0 tim3_cc2 #1 u1_tx #3 acmp0_o #1 63 pe3 bu_stat ebi_a10 #0 u1_rx #3 acmp1_o #1 64 pe4 ebi_a11 #0/1/2 us0_cs #1 65 pe5 ebi_a12 #0/1/2 us0_clk #1 66 pe6 ebi_a13 #0/1/2 us0_rx #1 67 pe7 ebi_a14 #0/1/2 us0_tx #1 68 pc8 acmp1_ch0 ebi_a15 #0/1/2 tim2_cc0 #2 us0_cs #2 les_ch8 #0 69 pc9 acmp1_ch1 ebi_a09 #1/2 tim2_cc1 #2 us0_clk #2 les_ch9 #0 gpio_em4wu2 70 pc10 acmp1_ch2 ebi_a10 #1/2 tim2_cc2 #2 us0_rx #2 les_ch10 #0 71 pc11 acmp1_ch3 ebi_ale #1/2 us0_tx #2 les_ch11 #0 72 pc12 acmp1_ch4 dac0_out1alt #0/ opamp_out1alt u1_tx #0 cmu_clk0 #1 les_ch12 #0 73 pc13 acmp1_ch5 dac0_out1alt #1/ opamp_out1alt tim0_cdti0 #1/3 tim1_cc0 #0 tim1_cc2 #4 pcnt0_s0in #0 u1_rx #0 les_ch13 #0 74 pc14 acmp1_ch6 dac0_out1alt #2/ opamp_out1alt tim0_cdti1 #1/3 tim1_cc1 #0 pcnt0_s1in #0 us0_cs #3 u0_tx #3 les_ch14 #0 75 pc15 acmp1_ch7 dac0_out1alt #3/ opamp_out1alt tim0_cdti2 #1/3 tim1_cc2 #0 us0_clk #3 u0_rx #3 les_ch15 #0 dbg_swo #1 76 pf0 tim0_cc0 #5 letim0_out0 #2 us1_clk #2 leu0_tx #3 i2c0_sda #5 dbg_swclk #0/1/2/3 77 pf1 tim0_cc1 #5 letim0_out1 #2 us1_cs #2 leu0_rx #3 i2c0_scl #5 dbg_swdio #0/1/2/3 gpio_em4wu3 78 pf2 ebi_ardy #0/1/2 tim0_cc2 #5 leu0_tx #4 acmp1_o #0 dbg_swo #0 gpio_em4wu4 79 pf3 ebi_ale #0 tim0_cdti0 #2/5 prs_ch0 #1 etm_td3 #1 80 pf4 ebi_wen #0/2 tim0_cdti1 #2/5 prs_ch1 #1 81 pf5 ebi_ren #0/2 tim0_cdti2 #2/5 prs_ch2 #1 82 iovdd_5 digital io power supply 5. 83 vss ground 84 pf6 ebi_bl0 #0/1/2 tim0_cc0 #2 u0_tx #0 85 pf7 ebi_bl1 #0/1/2 tim0_cc1 #2 u0_rx #0 86 pf8 ebi_wen #1 tim0_cc2 #2 etm_tclk #1 87 pf9 ebi_ren #1 etm_td0 #1 88 pd9 ebi_cs0 #0/1/2 89 pd10 ebi_cs1 #0/1/2 90 pd11 ebi_cs2 #0/1/2
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 61 www.silabs.com lqfp100 pin# and name pin alternate functionality / description pin # pin name analog ebi timers communication other 91 pd12 ebi_cs3 #0/1/2 92 pe8 ebi_ad00 #0/1/2 pcnt2_s0in #1 prs_ch3 #1 93 pe9 ebi_ad01 #0/1/2 pcnt2_s1in #1 94 pe10 ebi_ad02 #0/1/2 tim1_cc0 #1 us0_tx #0 boot_tx 95 pe11 ebi_ad03 #0/1/2 tim1_cc1 #1 us0_rx #0 les_altex5 #0 boot_rx 96 pe12 ebi_ad04 #0/1/2 tim1_cc2 #1 us0_rx #3 us0_clk #0 i2c0_sda #6 cmu_clk1 #2 les_altex6 #0 97 pe13 ebi_ad05 #0/1/2 us0_tx #3 us0_cs #0 i2c0_scl #6 les_altex7 #0 acmp0_o #0 gpio_em4wu5 98 pe14 ebi_ad06 #0/1/2 tim3_cc0 #0 leu0_tx #2 99 pe15 ebi_ad07 #0/1/2 tim3_cc1 #0 leu0_rx #2 100 pa15 ebi_ad08 #0/1/2 tim3_cc2 #0 4.2 alternate functionality pinout a wide selection of alternate functionality is available for multiplexing to various pins. this is shown in table 4.2 (p. 61 ) . the table shows the name of the alternate functionality in the first column, followed by columns showing the possible location bitfield settings. note some functionality, such as analog interfaces, do not have alternate settings or a loca- tion bitfield. in these cases, the pinout is shown in the column corresponding to loca- tion 0. table 4.2. alternate functionality overview alternate location functionality 0 1 2 3 4 5 6 description acmp0_ch0 pc0 analog comparator acmp0, channel 0. acmp0_ch1 pc1 analog comparator acmp0, channel 1. acmp0_ch2 pc2 analog comparator acmp0, channel 2. acmp0_ch3 pc3 analog comparator acmp0, channel 3. acmp0_ch4 pc4 analog comparator acmp0, channel 4. acmp0_ch5 pc5 analog comparator acmp0, channel 5. acmp0_ch6 pc6 analog comparator acmp0, channel 6. acmp0_ch7 pc7 analog comparator acmp0, channel 7. acmp0_o pe13 pe2 pd6 analog comparator acmp0, digital output. acmp1_ch0 pc8 analog comparator acmp1, channel 0. acmp1_ch1 pc9 analog comparator acmp1, channel 1. acmp1_ch2 pc10 analog comparator acmp1, channel 2. acmp1_ch3 pc11 analog comparator acmp1, channel 3. acmp1_ch4 pc12 analog comparator acmp1, channel 4.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 62 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description acmp1_ch5 pc13 analog comparator acmp1, channel 5. acmp1_ch6 pc14 analog comparator acmp1, channel 6. acmp1_ch7 pc15 analog comparator acmp1, channel 7. acmp1_o pf2 pe3 pd7 analog comparator acmp1, digital output. adc0_ch0 pd0 analog to digital converter adc0, input channel number 0. adc0_ch1 pd1 analog to digital converter adc0, input channel number 1. adc0_ch2 pd2 analog to digital converter adc0, input channel number 2. adc0_ch3 pd3 analog to digital converter adc0, input channel number 3. adc0_ch4 pd4 analog to digital converter adc0, input channel number 4. adc0_ch5 pd5 analog to digital converter adc0, input channel number 5. adc0_ch6 pd6 analog to digital converter adc0, input channel number 6. adc0_ch7 pd7 analog to digital converter adc0, input channel number 7. boot_rx pe11 bootloader rx boot_tx pe10 bootloader tx bu_stat pe3 backup power domain status, whether or not the system is in backup mode bu_vin pd8 battery input for backup power domain bu_vout pe2 power output for backup power domain cmu_clk0 pa2 pc12 pd7 clock management unit, clock output number 0. cmu_clk1 pa1 pd8 pe12 clock management unit, clock output number 1. dac0_n0 / opamp_n0 pc5 operational amplifier 0 external negative input. dac0_n1 / opamp_n1 pd7 operational amplifier 1 external negative input. opamp_n2 pd3 operational amplifier 2 external negative input. dac0_out0 / opamp_out0 pb11 digital to analog converter dac0_out0 / opamp output channel number 0. dac0_out0alt / opamp_out0alt pc0 pc1 pc2 pc3 pd0 digital to analog converter dac0_out0alt / opamp alternative output for channel 0. dac0_out1 / opamp_out1 pb12 digital to analog converter dac0_out1 / opamp output channel number 1. dac0_out1alt / opamp_out1alt pc12 pc13 pc14 pc15 pd1 digital to analog converter dac0_out1alt / opamp alternative output for channel 1. opamp_out2 pd5 pd0 operational amplifier 2 output. dac0_p0 / opamp_p0 pc4 operational amplifier 0 external positive input. dac0_p1 / opamp_p1 pd6 operational amplifier 1 external positive input. opamp_p2 pd4 operational amplifier 2 external positive input. dbg_swclk pf0 pf0 pf0 pf0 debug-interface serial wire clock input. note that this function is enabled to pin out of reset, and has a built-in pull down. dbg_swdio pf1 pf1 pf1 pf1 debug-interface serial wire data input / output. note that this function is enabled to pin out of reset, and has a built-in pull up. dbg_swo pf2 pc15 pd1 pd2 debug-interface serial wire viewer output. note that this function is not enabled after reset, and must be enabled by software to be used.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 63 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description ebi_a00 pa12 pa12 pa12 external bus interface (ebi) address output pin 00. ebi_a01 pa13 pa13 pa13 external bus interface (ebi) address output pin 01. ebi_a02 pa14 pa14 pa14 external bus interface (ebi) address output pin 02. ebi_a03 pb9 pb9 pb9 external bus interface (ebi) address output pin 03. ebi_a04 pb10 pb10 pb10 external bus interface (ebi) address output pin 04. ebi_a05 pc6 pc6 pc6 external bus interface (ebi) address output pin 05. ebi_a06 pc7 pc7 pc7 external bus interface (ebi) address output pin 06. ebi_a07 pe0 pe0 pe0 external bus interface (ebi) address output pin 07. ebi_a08 pe1 pe1 pe1 external bus interface (ebi) address output pin 08. ebi_a09 pe2 pc9 pc9 external bus interface (ebi) address output pin 09. ebi_a10 pe3 pc10 pc10 external bus interface (ebi) address output pin 10. ebi_a11 pe4 pe4 pe4 external bus interface (ebi) address output pin 11. ebi_a12 pe5 pe5 pe5 external bus interface (ebi) address output pin 12. ebi_a13 pe6 pe6 pe6 external bus interface (ebi) address output pin 13. ebi_a14 pe7 pe7 pe7 external bus interface (ebi) address output pin 14. ebi_a15 pc8 pc8 pc8 external bus interface (ebi) address output pin 15. ebi_a16 pb0 pb0 pb0 external bus interface (ebi) address output pin 16. ebi_a17 pb1 pb1 pb1 external bus interface (ebi) address output pin 17. ebi_a18 pb2 pb2 pb2 external bus interface (ebi) address output pin 18. ebi_a19 pb3 pb3 pb3 external bus interface (ebi) address output pin 19. ebi_a20 pb4 pb4 pb4 external bus interface (ebi) address output pin 20. ebi_a21 pb5 pb5 pb5 external bus interface (ebi) address output pin 21. ebi_a22 pb6 pb6 pb6 external bus interface (ebi) address output pin 22. ebi_a23 pc0 pc0 pc0 external bus interface (ebi) address output pin 23. ebi_a24 pc1 pc1 pc1 external bus interface (ebi) address output pin 24. ebi_a25 pc2 pc2 pc2 external bus interface (ebi) address output pin 25. ebi_a26 pc4 pc4 pc4 external bus interface (ebi) address output pin 26. ebi_a27 pd2 pd2 pd2 external bus interface (ebi) address output pin 27. ebi_ad00 pe8 pe8 pe8 external bus interface (ebi) address and data input / output pin 00. ebi_ad01 pe9 pe9 pe9 external bus interface (ebi) address and data input / output pin 01. ebi_ad02 pe10 pe10 pe10 external bus interface (ebi) address and data input / output pin 02. ebi_ad03 pe11 pe11 pe11 external bus interface (ebi) address and data input / output pin 03. ebi_ad04 pe12 pe12 pe12 external bus interface (ebi) address and data input / output pin 04. ebi_ad05 pe13 pe13 pe13 external bus interface (ebi) address and data input / output pin 05. ebi_ad06 pe14 pe14 pe14 external bus interface (ebi) address and data input / output pin 06. ebi_ad07 pe15 pe15 pe15 external bus interface (ebi) address and data input / output pin 07. ebi_ad08 pa15 pa15 pa15 external bus interface (ebi) address and data input / output pin 08.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 64 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description ebi_ad09 pa0 pa0 pa0 external bus interface (ebi) address and data input / output pin 09. ebi_ad10 pa1 pa1 pa1 external bus interface (ebi) address and data input / output pin 10. ebi_ad11 pa2 pa2 pa2 external bus interface (ebi) address and data input / output pin 11. ebi_ad12 pa3 pa3 pa3 external bus interface (ebi) address and data input / output pin 12. ebi_ad13 pa4 pa4 pa4 external bus interface (ebi) address and data input / output pin 13. ebi_ad14 pa5 pa5 pa5 external bus interface (ebi) address and data input / output pin 14. ebi_ad15 pa6 pa6 pa6 external bus interface (ebi) address and data input / output pin 15. ebi_ale pf3 pc11 pc11 external bus interface (ebi) address latch enable output. ebi_ardy pf2 pf2 pf2 external bus interface (ebi) hardware ready control input. ebi_bl0 pf6 pf6 pf6 external bus interface (ebi) byte lane/enable pin 0. ebi_bl1 pf7 pf7 pf7 external bus interface (ebi) byte lane/enable pin 1. ebi_cs0 pd9 pd9 pd9 external bus interface (ebi) chip select output 0. ebi_cs1 pd10 pd10 pd10 external bus interface (ebi) chip select output 1. ebi_cs2 pd11 pd11 pd11 external bus interface (ebi) chip select output 2. ebi_cs3 pd12 pd12 pd12 external bus interface (ebi) chip select output 3. ebi_cstft pa7 pa7 pa7 external bus interface (ebi) chip select output tft. ebi_dclk pa8 pa8 pa8 external bus interface (ebi) tft dot clock pin. ebi_dten pa9 pa9 pa9 external bus interface (ebi) tft data enable pin. ebi_hsnc pa11 pa11 pa11 external bus interface (ebi) tft horizontal synchronization pin. ebi_nandren pc3 pc3 pc3 external bus interface (ebi) nand read enable output. ebi_nandwen pc5 pc5 pc5 external bus interface (ebi) nand write enable output. ebi_ren pf5 pf9 pf5 external bus interface (ebi) read enable output. ebi_vsnc pa10 pa10 pa10 external bus interface (ebi) tft vertical synchronization pin. ebi_wen pf4 pf8 pf4 external bus interface (ebi) write enable output. etm_tclk pd7 pf8 pc6 pa6 embedded trace module etm clock . etm_td0 pd6 pf9 pc7 pa2 embedded trace module etm data 0. etm_td1 pd3 pd3 pa3 embedded trace module etm data 1. etm_td2 pd4 pd4 pa4 embedded trace module etm data 2. etm_td3 pd5 pf3 pd5 pa5 embedded trace module etm data 3. gpio_em4wu0 pa0 pin can be used to wake the system up from em4 gpio_em4wu1 pa6 pin can be used to wake the system up from em4 gpio_em4wu2 pc9 pin can be used to wake the system up from em4 gpio_em4wu3 pf1 pin can be used to wake the system up from em4 gpio_em4wu4 pf2 pin can be used to wake the system up from em4 gpio_em4wu5 pe13 pin can be used to wake the system up from em4 hfxtal_n pb14 high frequency crystal negative pin. also used as external optional clock input pin.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 65 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description hfxtal_p pb13 high frequency crystal positive pin. i2c0_scl pa1 pd7 pc7 pc1 pf1 pe13 i2c0 serial clock line input / output. i2c0_sda pa0 pd6 pc6 pc0 pf0 pe12 i2c0 serial data input / output. i2c1_scl pc5 pb12 pe1 i2c1 serial clock line input / output. i2c1_sda pc4 pb11 pe0 i2c1 serial data input / output. les_altex0 pd6 lesense alternate exite output 0. les_altex1 pd7 lesense alternate exite output 1. les_altex2 pa3 lesense alternate exite output 2. les_altex3 pa4 lesense alternate exite output 3. les_altex4 pa5 lesense alternate exite output 4. les_altex5 pe11 lesense alternate exite output 5. les_altex6 pe12 lesense alternate exite output 6. les_altex7 pe13 lesense alternate exite output 7. les_ch0 pc0 lesense channel 0. les_ch1 pc1 lesense channel 1. les_ch2 pc2 lesense channel 2. les_ch3 pc3 lesense channel 3. les_ch4 pc4 lesense channel 4. les_ch5 pc5 lesense channel 5. les_ch6 pc6 lesense channel 6. les_ch7 pc7 lesense channel 7. les_ch8 pc8 lesense channel 8. les_ch9 pc9 lesense channel 9. les_ch10 pc10 lesense channel 10. les_ch11 pc11 lesense channel 11. les_ch12 pc12 lesense channel 12. les_ch13 pc13 lesense channel 13. les_ch14 pc14 lesense channel 14. les_ch15 pc15 lesense channel 15. letim0_out0 pd6 pb11 pf0 pc4 low energy timer letim0, output channel 0. letim0_out1 pd7 pb12 pf1 pc5 low energy timer letim0, output channel 1. leu0_rx pd5 pb14 pe15 pf1 pa0 leuart0 receive input. leu0_tx pd4 pb13 pe14 pf0 pf2 leuart0 transmit output. also used as receive input in half duplex communication. leu1_rx pc7 pa6 leuart1 receive input. leu1_tx pc6 pa5 leuart1 transmit output. also used as receive input in half duplex communication. lfxtal_n pb8 low frequency crystal (typically 32.768 khz) negative pin. also used as an optional external clock input pin. lfxtal_p pb7 low frequency crystal (typically 32.768 khz) positive pin. pcnt0_s0in pc13 pe0 pc0 pd6 pulse counter pcnt0 input number 0. pcnt0_s1in pc14 pe1 pc1 pd7 pulse counter pcnt0 input number 1. pcnt1_s0in pc4 pb3 pulse counter pcnt1 input number 0.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 66 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description pcnt1_s1in pc5 pb4 pulse counter pcnt1 input number 1. pcnt2_s0in pd0 pe8 pulse counter pcnt2 input number 0. pcnt2_s1in pd1 pe9 pulse counter pcnt2 input number 1. prs_ch0 pa0 pf3 peripheral reflex system prs, channel 0. prs_ch1 pa1 pf4 peripheral reflex system prs, channel 1. prs_ch2 pc0 pf5 peripheral reflex system prs, channel 2. prs_ch3 pc1 pe8 peripheral reflex system prs, channel 3. tim0_cc0 pa0 pa0 pf6 pd1 pa0 pf0 timer 0 capture compare input / output channel 0. tim0_cc1 pa1 pa1 pf7 pd2 pc0 pf1 timer 0 capture compare input / output channel 1. tim0_cc2 pa2 pa2 pf8 pd3 pc1 pf2 timer 0 capture compare input / output channel 2. tim0_cdti0 pa3 pc13 pf3 pc13 pc2 pf3 timer 0 complimentary deat time insertion channel 0. tim0_cdti1 pa4 pc14 pf4 pc14 pc3 pf4 timer 0 complimentary deat time insertion channel 1. tim0_cdti2 pa5 pc15 pf5 pc15 pc4 pf5 timer 0 complimentary deat time insertion channel 2. tim1_cc0 pc13 pe10 pb0 pb7 pd6 timer 1 capture compare input / output channel 0. tim1_cc1 pc14 pe11 pb1 pb8 pd7 timer 1 capture compare input / output channel 1. tim1_cc2 pc15 pe12 pb2 pb11 pc13 timer 1 capture compare input / output channel 2. tim2_cc0 pa8 pa12 pc8 timer 2 capture compare input / output channel 0. tim2_cc1 pa9 pa13 pc9 timer 2 capture compare input / output channel 1. tim2_cc2 pa10 pa14 pc10 timer 2 capture compare input / output channel 2. tim3_cc0 pe14 pe0 timer 3 capture compare input / output channel 0. tim3_cc1 pe15 pe1 timer 3 capture compare input / output channel 1. tim3_cc2 pa15 pe2 timer 3 capture compare input / output channel 2. u0_rx pf7 pe1 pa4 pc15 uart0 receive input. u0_tx pf6 pe0 pa3 pc14 uart0 transmit output. also used as receive input in half duplex communication. u1_rx pc13 pb10 pe3 uart1 receive input. u1_tx pc12 pb9 pe2 uart1 transmit output. also used as receive input in half duplex communication. us0_clk pe12 pe5 pc9 pc15 pb13 pb13 usart0 clock input / output. us0_cs pe13 pe4 pc8 pc14 pb14 pb14 usart0 chip select input / output. us0_rx pe11 pe6 pc10 pe12 pb8 pc1 usart0 asynchronous receive. usart0 synchronous mode master input / slave output (miso). us0_tx pe10 pe7 pc11 pe13 pb7 pc0 usart0 asynchronous transmit.also used as receive input in half duplex communication. usart0 synchronous mode master output / slave input (mosi). us1_clk pb7 pd2 pf0 usart1 clock input / output. us1_cs pb8 pd3 pf1 usart1 chip select input / output. us1_rx pc1 pd1 pd6 usart1 asynchronous receive. usart1 synchronous mode master input / slave output (miso). us1_tx pc0 pd0 pd7 usart1 asynchronous transmit.also used as receive input in half duplex communication. usart1 synchronous mode master output / slave input (mosi).
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 67 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description us2_clk pc4 pb5 usart2 clock input / output. us2_cs pc5 pb6 usart2 chip select input / output. us2_rx pc3 pb4 usart2 asynchronous receive. usart2 synchronous mode master input / slave output (miso). us2_tx pc2 pb3 usart2 asynchronous transmit.also used as receive input in half duplex communication. usart2 synchronous mode master output / slave input (mosi). 4.3 gpio pinout overview the specific gpio pins available in EFM32LG280 is shown in table 4.3 (p. 67 ) . each gpio port is organized as 16-bit ports indicated by letters a through f, and the individual pin on this port in indicated by a number from 15 down to 0. table 4.3. gpio pinout port pin 15 pin 14 pin 13 pin 12 pin 11 pin 10 pin 9 pin 8 pin 7 pin 6 pin 5 pin 4 pin 3 pin 2 pin 1 pin 0 port a pa15 pa14 pa13 pa12 pa11 pa10 pa9 pa8 pa7 pa6 pa5 pa4 pa3 pa2 pa1 pa0 port b - pb14 pb13 pb12 pb11 pb10 pb9 pb8 pb7 pb6 pb5 pb4 pb3 pb2 pb1 pb0 port c pc15 pc14 pc13 pc12 pc11 pc10 pc9 pc8 pc7 pc6 pc5 pc4 pc3 pc2 pc1 pc0 port d - - - pd12 pd11 pd10 pd9 pd8 pd7 pd6 pd5 pd4 pd3 pd2 pd1 pd0 port e pe15 pe14 pe13 pe12 pe11 pe10 pe9 pe8 pe7 pe6 pe5 pe4 pe3 pe2 pe1 pe0 port f - - - - - - pf9 pf8 pf7 pf6 pf5 pf4 pf3 pf2 pf1 pf0 4.4 opamp pinout overview the specific opamp terminals available in EFM32LG280 is shown in figure 4.2 (p. 67 ) . figure 4.2. opamp pinout - + opa0 - + opa2 - + opa1 out0alt out0 out2 out1alt out1 pc4 pc5 pd4 pd3 pd6 pd7 pb11 pb12 pc0 pc1 pc2 pc3 pc12 pc13 pc14 pc15 pd0 pd1 pd5
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 68 www.silabs.com 4.5 lqfp100 package figure 4.3. lqfp100 note: 1. datum 't', 'u' and 'z' to be determined at datum plane 'h'. 2. datum 'd' and 'e' to be determined at seating plane datum 'y'. 3. dimension 'd1' and 'e1' do not include mold protrusions. allowable protrusion is 0.25 per side. di- mensions 'd1' and 'e1' do include mold mismatch and are determined at datum plane datum 'h'. 4. dimension 'b' does not include dambar protrusion. allowable dambar protrusion shall not cause the lead width to exceed the maximum 'b' dimension by more than 0.08 mm. dambar can not be located on the lower radius or the foot. minimum space between protrusion and an adjacent lead is 0.07 mm 5. exact shape of each corner is optional.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 69 www.silabs.com table 4.4. lqfp100 (dimensions in mm) symbol min nom max total thickness a -- -- 1.6 stand off a1 0.05 -- 0.15 mold thickness a2 1.35 1.4 1.45 lead width (plating) b 0.17 0.2 0.27 lead width b1 0.17 -- 0.23 l/f thickness (plating) c 0.09 -- 0.2 lead thickness c1 0.09 -- 0.16 x d 16 bsc y e 16 bsc x d1 14 bsc body size y e1 14 bsc lead pitch e 0.5 bsc l 0.45 0.6 0.75 footprint l1 1 ref q 0 3.5 7 q 1 0 -- -- q 2 11 12 13 q 3 11 12 13 r1 0.08 -- -- r1 0.08 -- 0.2 s 0.2 -- -- package edge tolerance aaa 0.2 lead edge tolerance bbb 0.2 coplanarity ccc 0.08 lead offset ddd 0.08 mold flatness eee 0.05 the lqfp100 package uses nickel-palladium-gold preplated leadframe. all efm32 packages are rohs compliant and free of bromine (br) and antimony (sb). for additional quality and environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 70 www.silabs.com 5 pcb layout and soldering 5.1 recommended pcb layout figure 5.1. lqfp100 pcb land pattern e a d c b p1 p2 p3 p4 p5 p6 p7 p8 table 5.1. qfp100 pcb land pattern dimensions (dimensions in mm) symbol dim. (mm) symbol pin number symbol pin number a 1.45 p1 1 p6 75 b 0.30 p2 25 p7 76 c 0.50 p3 26 p8 100 d 15.40 p4 50 - - e 15.40 p5 51 - -
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 71 www.silabs.com figure 5.2. lqfp100 pcb solder mask e a d c b table 5.2. qfp100 pcb solder mask dimensions (dimensions in mm) symbol dim. (mm) a 1.57 b 0.42 c 0.50 d 15.40 e 15.40
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 72 www.silabs.com figure 5.3. lqfp100 pcb stencil design e a d c b table 5.3. qfp100 pcb stencil design dimensions (dimensions in mm) symbol dim. (mm) a 1.35 b 0.20 c 0.50 d 15.40 e 15.40 1. the drawings are not to scale. 2. all dimensions are in millimeters. 3. all drawings are subject to change without notice. 4. the pcb land pattern drawing is in compliance with ipc-7351b. 5. stencil thickness 0.125 mm. 6. for detailed pin-positioning, see figure 4.3 (p. 68 ) . 5.2 soldering information the latest ipc/jedec j-std-020 recommendations for pb-free reflow soldering should be followed. the packages have a moisture sensitivity level rating of 3, please see the latest ipc/jedec j-std-033 standard for msl description and level 3 bake conditions.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 73 www.silabs.com 6 chip marking, revision and errata 6.1 chip marking in the illustration below package fields and position are shown. figure 6.1. example chip marking (top view) 6.2 revision the revision of a chip can be determined from the "revision" field in figure 6.1 (p. 73 ) . 6.3 errata please see the errata document for EFM32LG280 for description and resolution of device erratas. this document is available in simplicity studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=mcus--32-bit
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 74 www.silabs.com 7 revision history 7.1 revision 1.30 june 13th, 2014 removed "preliminary" markings. updated electrical characteristics and updated/added plots. updated orderable part numbers. added auxhfrco to block diagram and electrical characteristics. added ebi timing chapter. 7.2 revision 1.21 november 21st, 2013 updated figures. updated errata-link. updated chip marking. added link to environmental and quality information. re-added missing dac-data. 7.3 revision 1.20 september 30th, 2013 added i2c characterization data. added spi characterization data. corrected the dac and opamp2 pin sharing information in the alternate functionality pinout section. corrected gpio operating voltage from 1.8 v to 1.85 v. corrected the adc resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. updated environmental information. updated trademark, disclaimer and contact information. other minor corrections. 7.4 revision 1.10 june 28th, 2013 updated power requirements in the power management section. removed minimum load capacitance figure and table. added reference to application note. other minor corrections.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 75 www.silabs.com 7.5 revision 1.00 september 11th, 2012 updated the hfrco 1 mhz band typical value to 1.2 mhz. updated the hfrco 7 mhz band typical value to 6.6 mhz. other minor corrections. 7.6 revision 0.92 may 25th, 2012 corrected em3 current consumption in the electrical characteristics section. 7.7 revision 0.90 april 27th, 2012 initial preliminary release.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 76 www.silabs.com a disclaimer and trademarks a.1 disclaimer silicon laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the silicon laboratories products. characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "typical" parameters provided can and do vary in different applications. application examples described herein are for illustrative purposes only. silicon laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. silicon laboratories shall have no liability for the conse- quences of use of the information supplied herein. this document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. the products must not be used within any life support system without the specific written consent of silicon laboratories. a "life support system" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. silicon laboratories products are generally not intended for military applications. silicon laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. a.2 trademark information silicon laboratories inc., silicon laboratories, silicon labs, silabs and the silicon labs logo, cmems?, efm, efm32, efr, energy micro, energy micro logo and combinations thereof, "the world?s most ener- gy friendly microcontrollers", ember?, ezlink?, ezmac?, ezradio?, ezradiopro?, dspll?, iso- modem?, precision32?, proslic?, siphy?, usbxpress? and others are trademarks or registered trademarks of silicon laboratories inc. arm, cortex, cortex-m3 and thumb are trademarks or reg- istered trademarks of arm holdings. keil is a registered trademark of arm limited. all other products or brand names mentioned herein are trademarks of their respective holders.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 77 www.silabs.com b contact information silicon laboratories inc. 400 west cesar chavez austin, tx 78701 please visit the silicon labs technical support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 78 www.silabs.com table of contents 1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. system summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. system introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3. electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1. test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5. transition between energy modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8. general purpose input output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9. oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.10. analog digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.11. digital analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.12. operational amplifier (opamp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.13. analog comparator (acmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.14. voltage comparator (vcmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.15. ebi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.16. i2c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.17. usart spi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.18. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4. pinout and package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1. pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2. alternate functionality pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3. gpio pinout overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4. opamp pinout overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.5. lqfp100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5. pcb layout and soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1. recommended pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2. soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6. chip marking, revision and errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.1. chip marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2. revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3. errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7. revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.1. revision 1.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2. revision 1.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.3. revision 1.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.4. revision 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.5. revision 1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.6. revision 0.92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.7. revision 0.90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 a. disclaimer and trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 a.1. disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 a.2. trademark information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 b. contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 b.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 79 www.silabs.com list of figures 2.1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. EFM32LG280 memory map with largest ram and flash sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1. em1 current consumption with all peripheral clocks disabled and hfxo running at 48mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2. em1 current consumption with all peripheral clocks disabled and hfrco running at 28mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3. em1 current consumption with all peripheral clocks disabled and hfrco running at 21mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4. em1 current consumption with all peripheral clocks disabled and hfrco running at 14mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5. em1 current consumption with all peripheral clocks disabled and hfrco running at 11mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6. em1 current consumption with all peripheral clocks disabled and hfrco running at 6.6mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7. em1 current consumption with all peripheral clocks disabled and hfrco running at 1.2mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8. em2 current consumption. rtc prescaled to 1khz, 32.768 khz lfrco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9. em3 current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10. em4 current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.11. typical low-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.12. typical high-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.13. typical low-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14. typical high-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.15. typical low-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.16. typical high-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.17. calibrated lfrco frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18. calibrated hfrco 1 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.19. calibrated hfrco 7 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.20. calibrated hfrco 11 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.21. calibrated hfrco 14 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.22. calibrated hfrco 21 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.23. calibrated hfrco 28 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.24. integral non-linearity (inl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.25. differential non-linearity (dnl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.26. adc frequency spectrum, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.27. adc integral linearity error vs code, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.28. adc differential linearity error vs code, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.29. adc absolute offset, common mode = vdd /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.30. adc dynamic performance vs temperature for all adc references, vdd = 3v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.31. adc temperature sensor readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.32. opamp common mode rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.33. opamp positive power supply rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.34. opamp negative power supply rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.35. opamp voltage noise spectral density (unity gain) v out =1v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.36. opamp voltage noise spectral density (non-unity gain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.37. acmp characteristics, vdd = 3v, temp = 25c, fullbias = 0, halfbias = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.38. ebi write enable timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.39. ebi address latch enable related output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.40. ebi read enable related output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.41. ebi read enable related timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.42. ebi ready/wait related timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.43. spi master timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.44. spi slave timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1. EFM32LG280 pinout (top view, not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2. opamp pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3. lqfp100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1. lqfp100 pcb land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2. lqfp100 pcb solder mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3. lqfp100 pcb stencil design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1. example chip marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 80 www.silabs.com list of tables 1.1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3. environmental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5. energy modes transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8. gpio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9. lfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.10. hfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.11. lfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.12. hfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.13. auxhfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.14. ulfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.15. adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.16. dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.17. opamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.18. acmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.19. vcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.20. ebi write enable timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.21. ebi address latch enable related output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.22. ebi read enable related output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.23. ebi read enable related timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.24. ebi ready/wait related timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.25. i2c standard-mode (sm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.26. i2c fast-mode (fm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.27. i2c fast-mode plus (fm+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.28. spi master timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.29. spi master timing with sssearly and smsdelay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.30. spi slave timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.31. spi slave timing with sssearly and smsdelay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.32. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1. device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2. alternate functionality overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3. gpio pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4. lqfp100 (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1. qfp100 pcb land pattern dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2. qfp100 pcb solder mask dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3. qfp100 pcb stencil design dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
...the world's most energy friendly microcontrollers 2014-06-13 - EFM32LG280fxx - d0107_rev1.30 81 www.silabs.com list of equations 3.1. total acmp active current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2. vcmp trigger level as a function of level setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49


▲Up To Search▲   

 
Price & Availability of EFM32LG280

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X